K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2021

Do đa thức chia là \(x^2-4x+3\)là đa thức bậc hai nên đa thức dư là đa thức bậc nhất, có dạng \(ax+b\).

Đặt \(P\left(x\right)=Q\left(x\right)\left(x^2-4x+3\right)+ax+b\)

\(P\left(1\right)=Q\left(1\right)\left(1-4+3\right)+a+b\Leftrightarrow a+b=3\)

\(P\left(3\right)=Q\left(3\right)\left(9-12+3\right)+3a+b\Leftrightarrow3a+b=7\)

Ta có hệ: 

\(\hept{\begin{cases}a+b=3\\3a+b=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\).

Vậy đa thức dư là: \(2x+1\).

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

8 tháng 3 2017

Theo đề bài ta có:

f(x) = x + x3 + x9 + x27 + x81 + x243 = Q(x).(x2 - 1) + ax + b

Thế f(1), f(-1) ta có hệ:

\(\hept{\begin{cases}a+b=6\\-a+b=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=6\\b=0\end{cases}}\)

Vậy a + b = 6

NV
20 tháng 3 2022

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

24 tháng 3 2022

 Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ

 

25 tháng 11 2019

Áp dụng định lí Bezout :

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)