K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Giả sử P(x)= ax3+bx2+cx+d
P(5)=259 <=> 125a+25b+5c+d=259
Do 0<= a,b,c,d<5 nên a=2
=> 25b+5c+d=9
Do 9<25 nên b=0
=> 5c+d=9 => c=1, d=4
=> P(x)= 2x3+x+4
=>P(2061)=17509108027

16 tháng 7 2016

P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)

Từ điều kiện c) ta có :

- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0

- Nếu số k đó là x; z hoặc e :

- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0   =>  -ax5 =  by4 + cz3 + dt2 + e

Dễ thấy by4 + cz3 + dt2 + e > 0  =>  -ax5 > 0 => .... tìm đc x

Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.

Nhờ Kiệt giúp kìa

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

1 tháng 2 2021

Dễ chứng minh được với 1 số chính phương khi chia cho 7 ta chỉ có các khả năng dư: 0 , 1 , 2 , 4

Khi đó \(a^2+b^2\)  chia 7 sẽ có các khả năng dư sau: 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 7

Mà theo đề bài \(a^2+b^2\) chia hết cho 7 nên sẽ chỉ duy nhất 1 khả năng là \(\hept{\begin{cases}a^2⋮7\\b^2⋮7\end{cases}}\)

Vì 7 là số nguyên tố => a và b đều chia hết cho 7

=> đpcm

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
25 tháng 4 2020

Gọi nghiệm của đa thức là a => P(a)=0

=> P(2)-P(a)chia hết cho2-a

=> 13 chia hết cho 2-a

=> a có thể là 1; 3; -11; 15

Lại có P(10)-P(a)=5 chia hết cho 10-a=> 5 chia hết cho a-10

=>a có thể là 9; 11; 15; -15

=> a=15

=> P(15)=0