Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
b) Thay \(b=3a+c\) vào \(f\left(x\right)\) ta được :
\(f\left(x\right)\) \(=ax^{\:3}+\left(3a+c\right)x^2+cx+d\)
\(=ax^{\:3}+3ax^2+cx^2+cx+d\)
\(\Rightarrow f\left(1\right).f\left(2\right)=\left(a.1^3+3a.1^2+c.1^2+c.1+d\right)\left[a.\left(-2\right)^3+3a.\left(-2\right)^2+c\left(-2\right)^2+c\left(-2\right)+d\right]\)
=\(\left(a+3a+c+c+d\right)\left(-8a+12a+4c-2c+d\right)\)
= \(\left(4a+2c+d\right)\left(4a+2c+d\right)\)
= \(\left(4a+2c+d\right)^2\)
Mà a, b , c, d là số nguyên nên f(1) .(f2 ) là bình phương của 1 số nguyên
Câu s bạn tự làm nha