Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Không mất tính tổng quát giả sử \(a\ge b\ge c\ge d\)=>\(a^2\ge b^2\ge c^2\ge d^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)
=>\(A\le\frac{4}{d^2}\)=>\(d^2\le4\)=>\(d\in\text{ }\text{{}\pm1,\pm2\text{ }\)
Xét \(d=\pm1\)=> vô lí
Xét d=\(\pm\)2=> a=b=c=d=\(\pm\)2
=> M=ab+cd=4+4=8
TH1: Nếu a+b+c \(\ne0\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)
mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)
Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)
TH2 : Nếu a+b+c = 0
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)
mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)
vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
TH1: a+b+c=0
\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)
TH2: a+b+c khác 0
\(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{a+c}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}}\)
Thay vào biểu thức A ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
Vậy..........
Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)
Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}\Leftrightarrow bc=ab\Rightarrow a=c\)(1)
Tương tựi ta cũng có : \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)(2)
Từ (1);(2) \(\Rightarrow a=b=c\)Thay vào M ta được :\(M=\frac{a.a+a.a+a.a}{a^2+b^2+c^2}=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=b=c=a\)
\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Leftrightarrow6a-2a=2b+3b\)
\(\Leftrightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow4a-3a=3b-3c+2b\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a=4a-3c\)
\(\Leftrightarrow3a=3c\)
\(\Rightarrow a=c\)
\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)