K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)

Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)

22 tháng 1 2019

Cảm ơn bạn nhé.
Bạn cho mình hỏi, làm sao ra được \(\dfrac{2019}{2019}\)vậy ạ?

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

Không mất tính tổng quát giả sử \(a\ge b\ge c\ge d\)=>\(a^2\ge b^2\ge c^2\ge d^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)

=>\(A\le\frac{4}{d^2}\)=>\(d^2\le4\)=>\(d\in\text{ }\text{{}\pm1,\pm2\text{ }\)

Xét \(d=\pm1\)=> vô lí

Xét d=\(\pm\)2=> a=b=c=d=\(\pm\)2

=> M=ab+cd=4+4=8

6 tháng 1 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{a+c}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}}\)

Thay vào biểu thức A ta có :

\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

Vậy..........

3 tháng 4 2017

Ta có \(\dfrac{a}{2009}\)=\(\dfrac{b}{2010}\)=\(\dfrac{c}{2011}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}=\dfrac{c-a}{2011-2009}=\dfrac{c-a}{2}\left(1\right)\)

\(\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}=\dfrac{a-b}{2009-2010}=\dfrac{a-b}{-1}\)(2)\(\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}=\dfrac{b-c}{2010-2011}=\dfrac{b-c}{-1}\left(3\right)\)

Từ (1),(2),(3) \(_{\Rightarrow}\)\(\dfrac{c-a}{2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\Rightarrow\dfrac{\left(a-c\right)^{ }2}{2^{ }2}=\dfrac{\left(a-b\right)}{-1}\times\dfrac{\left(b-c\right)}{-1}\)

\(\Rightarrow\dfrac{\left(a-c\right)^2}{4}=\dfrac{\left(a-b\right)\times\left(b-c\right)}{1}\Rightarrow4\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\)

\(\Rightarrow M=4\left(a-b\right).\left(a-c\right)-\left(c-a\right)^2=0\)

Vậy M = 0

4 tháng 4 2017

đặt \(\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}=k\) ta có:

\(\Rightarrow a=2009k\left(1\right)\\ \Rightarrow b=2010k\left(2\right)\\ \Rightarrow c=2011k\left(3\right)\)

thay 1;2;3 vào M ta có:

\(M=4\left(2009k-2010k\right)\left(2010k-2011k\right)-\left(2011k-2009k\right)^2\\ \Rightarrow M=4.\left(-k\right)\left(-k\right)-\left(2k\right)^2\\ \Rightarrow M=4k^2-\left(2k\right)^2\\ \Rightarrow M=\left(2k\right)^2-\left(2k\right)^2\\ \Rightarrow M=0\)Vậy M = 0

28 tháng 4 2021

Mình nghĩ là bạn ghi hơi nhầm á, câu 2 phải ra giá trị nguyên mới đúng chứ 

28 tháng 3 2019

TH1: Nếu a+b+c \(\ne0\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)

Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)

TH2 : Nếu a+b+c = 0

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

        \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)

vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

TH1: a+b+c=0 

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)

TH2: a+b+c khác 0

 \(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)