K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

8 hay 6???

19 tháng 3 2018

6

6 tháng 5 2018

từ giả thuyết suy ra : abc >0

có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0

\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)

Cộng a2+b2+cvào (1)

2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2

(a+b+c)2-4\(\ge\)a2+b2+c2

thay a+b+c=3 vào

9-4\(\ge\)a2+b2+c2

\(\ge\)a2+b2+c2

a2+b2+c\(\le\)5

6 tháng 5 2018

cauhc lop may

15 tháng 6 2017

\(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)

\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)

\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)

Ta có :

\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)

\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

4 tháng 12 2017

Áp dụng BĐT Bunyakovsky, ta có:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{3}{4}\)

25 tháng 10 2016

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)

\(\Rightarrow2\left(ab+bc+ca\right)\ge4\)

\(\Rightarrow-2\left(ab+bc+ca\right)\le-4\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\)(Đpcm)

Dấu = khi \(\hept{\begin{cases}\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\\abc=0\\a+b+c=3\end{cases}}\)

\(\Rightarrow\left(a;b;c\right)=\left(2;1;0\right)\)và hoán vị.

18 tháng 5 2018

a = 2 ( t/m )

b = 1 ( t/m )

c = 0 ( t/m )

vậy \(a^2+b^2+c^2\le5\)

22 tháng 7 2021

Ta có:

\(\left(a+1\right)\left(a-2\right)\le0;\left(b+1\right)\left(b-2\right)\le0;\left(c+1\right)\left(c-2\right)\le0\)

\(\Leftrightarrow a^2\le2+a;b^2\le2+b;c^2\le2+c\)

\(\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)