Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/Theo đề ta có:
\(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)(1)
Lại có: \(x-a=b-y\) Thay vào (1) đc
\(\left(x-a\right)\left(x+a\right)-\left(x-a\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a-b-y\right)=0\Rightarrow x=a\)(2)
Tương tự ta cũng có:
\(\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\Rightarrow b=y\)(3)
(2) và (3) có ĐPCM
Bạn tham khảo câu trả lời ở đây nhé:
http://pitago.vn/question/cho-a-b-c-doi-mot-khac-nhau-thoa-man-abacbc-1-tinh-gia-tr-40688.html
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)
\(x^3+3y^2-6y+3+8=0\Leftrightarrow3\left(y-1\right)^2=-x^3-8\)
\(3\left(y-1\right)^2\ge0\Rightarrow-x^3-8\ge0\Rightarrow x\le-2\) (1)
Từ pt sau ta có:
\(\left(x^2-3\right).y^2-2y+x^2-3=0\)
\(\Delta'=1-\left(x^2-3\right)^2\ge0\Leftrightarrow-1\le x^2-3\le1\)
\(\Rightarrow2\le x^2\le4\Rightarrow\left|x\right|\le2\Rightarrow x\ge-2\) (2)
Từ (1) và (2) \(\Rightarrow x=-2\Rightarrow y=1\) \(\Rightarrow A=-7\)
từ giả thuyết suy ra : abc >0
có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0
\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)
Cộng a2+b2+c2 vào (1)
2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2
(a+b+c)2-4\(\ge\)a2+b2+c2
thay a+b+c=3 vào
9-4\(\ge\)a2+b2+c2
5 \(\ge\)a2+b2+c2
a2+b2+c2 \(\le\)5
Không mất tính tổng quát giả sử a lớn nhất trong các số a,b,c. Từ đó suy ra
\(3a\ge a+b+c=3\Leftrightarrow2\ge a\ge1\left(1\right)\)
Từ điều kiện \(0\le b,c\le a\le2\). ta có
\(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\left(2\right)\)
Mà từ \(b,c\ge0\) và \(a+b+c=3\).Lưu ý rằng khi ta có \(1\le a\le2\) từ \(\left(1\right)\) ta có: \(\left(a-\frac{3}{2}\right)^3\le\frac{1}{4}\left(3\right)\).
Vậy \(a^3+b^3+c^3\le9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{9}{4}+\frac{27}{4}=9\)
Từ (2) và (3). Như vậy đã chứng minh xong
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=2\\b=1\\c=0\end{cases}}\)
Let \(a\ge b\ge c\)
Since \(f\left(x\right)=x^3\)is a convex function on \(\left[0,3\right]\) and \(\left(2,1,0\right)›\left(a,b,c\right)\)
By Karamata's inequality we obtain
\(9=2^3+1^3+0^2\ge a^3+b^3+c^3\)
Done! :)))
P/s:viết tiếng anh giỏi quá =))