Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:dài quá :vv
B2:\(Q=\frac{x^2}{x^4+x^2+1}=\frac{x^2}{x^4+2x^2+1-x^2}=\frac{x^2}{\left(x^2+1\right)-x^2}=\frac{x^2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
\(=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}=\frac{2}{3}.\frac{x}{x^2+x+1}\)
\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow\frac{x^2-x+1}{x}=\frac{3}{2}\Rightarrow\frac{x^2-x+1}{x}+2=\frac{3}{2}+2\Rightarrow\frac{x^2+x+1}{x}=\frac{7}{2}\)
\(\Rightarrow\frac{x}{x^2+x+1}=\frac{2}{7}\Rightarrow Q=\frac{2}{3}.\frac{2}{7}=\frac{4}{21}\)
3.
Ta có: \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Do a(a-1)(a+1)(a-2)(a+2) là tích của 5 số hạng liên tiếp nên chia hết cho 2,3 và 5
Lại có a(a-1)(a+1) là tích của 3 số hạng liên tiếp nên chia hết cho 2,3 suy ra 5a(a-1)(a+1) chia hết cho 2,3,5
Từ đó:a(a-1)(a+1)(a-1)(a+2)+5a(a-1)(a+1) chia hết cho 2,3,5 hay a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1) chia hết cho 30 \(\Leftrightarrow a^5-a\) chia hết cho 30
Tương tự ta có\(b^5-b\) chia hết cho 30, \(c^5-c\) chia hết cho 30
Do đó:\(a^5-a+b^5-b+c^5-c⋮30\)
\(\Leftrightarrow a^5+b^5+c^5-\left(a+b+c\right)⋮30\)
Mà a+b+c=0 nên;
\(a^5+b^5+c^5⋮30\left(ĐCCM\right)\)
Đề sai ạ ! Sửa lại nhé :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
\(\Leftrightarrow A=\frac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right)\)
\(\Leftrightarrow A=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-x^2+3x-9}\)
\(\Leftrightarrow A=\frac{-\left(x+3\right)}{x}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow-\left(x+3\right)⋮x\)
\(\Leftrightarrow-x-3⋮x\)
\(\Leftrightarrow3⋮x\)
\(\Leftrightarrow x\inƯ\left(3\right)\)
Vậy để \(A\inℤ\Leftrightarrow x\inƯ\left(3\right)\)(\(x\neℤ\))
Bạn sửa cho mik dòng cuối :
\(x\ne Z\)thành \(x\notin Z\)nhé !
\(ĐKXĐ:x\ne\pm1\)
a) \(P=\frac{2x+3}{x+1}-\frac{x+2}{x-1}+\frac{3x+5}{x^2-1}\)
\(\Leftrightarrow P=\frac{\left(2x+3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+3x+5}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{2x^2+x-3-x^2-3x-2+3x+5}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{x^2+x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{x}{x-1}\)
b) Để \(P\inℤ\)
\(\Leftrightarrow x⋮x-1\)
\(\Leftrightarrow x-1+1⋮x-1\)
\(\Leftrightarrow1⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{0;2\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;2\right\}\)
ĐKXĐ: \(x\ne0;x\ne\pm2\)
a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)
b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)
Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)
c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy x=3/2 thì A=2
d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy với x>2 thì A<0
e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}
Ta có: x-2=1 => x=3 (t/m)
x-2=-1 => x=1 (t/m)
Vậy x thuộc {3;1} thì A thuộc Z
a) \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)
\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)
\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)
Vậy \(A=\frac{1}{2-x}.\)
b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)
Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...
c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...
d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...
e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)
Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)
Vậy x=1 hay x=3 thì A nguyên.
a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)
A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)
b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)
Để A \(\in\)Z <=> 2 \(⋮\)x - 1
<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){2; 0; 3; -1}
c) Ta có: A < 0
=> \(\frac{x+1}{x-1}< 0\)
=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)
=> -1 < x < 1
Edogawa Conan
Thiếu dòng đầu \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)