K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

Vì 20162017 chia hết cho 3 nên a1 +a2 + ... +a2017 chia hết cho 3.

Mặt khác với mỗi số a bất kì thì a3 và a luôn có cùng số dư khi chia cho 3.

Kết hợp hai điều trên ta có a13 + a23 + .... + a32017 chia hết cho 3.

22 tháng 7 2020

Ta thấy: \(2017^{2016}\equiv1\)(mod 6)

Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)

Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6

Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên

Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)

Vậy \(\text{Σ}n_i^3\)chia 6 dư 1

22 tháng 7 2020

ta có: \(N=2017^{2016}\)

xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a

đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)

\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)

\(\Rightarrow S-N⋮6\)

=> S và N cùng số dư khi chia cho 6

thấy 2017 chia 6 dư 1

20172016 chia 6 dư 1 => N chia 6 dư 1

=> S chia 6 dư 1

12 tháng 11 2017

Ta có: \(A=a_1+a_2+a_2+...+a_{2017}=2019^{2018}=3^{2018}.673^{2018}\)

\(\Rightarrow A⋮3\). (1)

Lai có \(B-A=(a_1^3+a_2^3+...+a_{2017}^3)-\left(a_1+a_2+...+a_{2017}\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2017}^3-a_{2017}\right)\)

Mat khac \(a_i^3-a_i=\left(a_i-1\right).a_i.\left(a_i+1\right)⋮3\) \(\left(1\le i\le2017\right)\)

Vậy từ đó ta suy ra \(B-A⋮3\) (2)

\(\left(1\right);\left(2\right)\Rightarrow B⋮3\)

4 tháng 7 2019

Câu hỏi của Phạm Hữu Nam - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo link trên!