Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a+b=\dfrac{-1+\sqrt{2}}{2}+\dfrac{-1-\sqrt{2}}{2}=-1\)
\(ab=\dfrac{-1+\sqrt{2}}{2}.\dfrac{-1-\sqrt{2}}{2}=\dfrac{-1}{4}\)
\(\left(a+b\right)^2=a^2+b^2+2ab=1\)
\(\Rightarrow a^2+b^2+2.\dfrac{-1}{4}=1\)\(\Rightarrow a^2+b^2=\dfrac{3}{2}\) (1)
\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=-1\)
\(\Rightarrow a^3+b^3+3.\dfrac{-1}{4}.\left(-1\right)=-1\)\(\Rightarrow a^3+b^3=\dfrac{-7}{4}\) (2)
Từ (1) và (2) suy ra \(\left(a^2+b^2\right)\left(a^3+b^3\right)=\dfrac{3}{2}.\dfrac{-7}{4}=\dfrac{-21}{8}\)
\(\Rightarrow a^5+a^3b^2+a^2b^3+b^5=\dfrac{-21}{8}\)
\(\Rightarrow a^5+b^5+a^2b^2\left(a+b\right)=\dfrac{-21}{8}\)
\(\Rightarrow a^5+b^5+\dfrac{1}{16}.\left(-1\right)=\dfrac{-21}{8}\)\(\Rightarrow a^5+b^5=\dfrac{-41}{16}\) (3)
Từ (1) và (3) suy ra \(\left(a^2+b^2\right)\left(a^5+b^5\right)=\dfrac{3}{2}.\dfrac{-41}{16}=\dfrac{-123}{32}\)
\(\Rightarrow a^7+a^5b^2+a^2b^5+b^7=\dfrac{-123}{32}\)
\(\Rightarrow a^7+b^7+a^2b^2\left(a^3+b^3\right)=\dfrac{-123}{32}\)
\(\Rightarrow a^7+b^7+\dfrac{1}{16}.\dfrac{-7}{4}=\dfrac{-123}{32}\)\(\Rightarrow a^7+b^7=\dfrac{-239}{64}\)
Vậy \(a^7+b^7=\dfrac{-239}{64}\)
Biến đổi vế trái ta có:
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*
Vì \(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được
\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)
\(VT=VP\)=> đpcm
vì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
mà \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)
Lời giải:
Từ điều kiện đề bài suy ra: \(\left\{\begin{matrix} x+y=\sqrt{7}\\ xy=1\end{matrix}\right.\)
\(A=x^7+y^7=(x^3+y^3)(x^4+y^4)-(x^3y^4+x^4y^3)\)
Có:
\(x^3+y^3=(x+y)^3-3xy(x+y)=(\sqrt{7})^3-3\sqrt{7}=4\sqrt{7}\)
\(x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2(xy)^2=(7-2)^2-2.1^2=23\)
\(x^3y^4+x^4y^4=(xy)^3(x+y)=1^3.\sqrt{7}=\sqrt{7}\)
Do đó:
\(A=4\sqrt{7}.23-\sqrt{7}=92\sqrt{7}-\sqrt{7}=91\sqrt{7}\)
đặt \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow a=\dfrac{k^3}{m^3};b=\dfrac{k^3}{n^3};c=\dfrac{k^3}{p^3}\)
VT=\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\dfrac{k}{m}+\dfrac{k}{n}+\dfrac{k}{p}=k\)
VF=\(\sqrt[3]{\dfrac{k^3}{m}+\dfrac{k^3}{n}+\dfrac{k^3}{p}}=\sqrt[3]{k^3}=k\)
do đó VT=VF, đẳng thức được chứng minh
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
Tham khảo: