K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Biến đổi vế trái ta có:

\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*

\(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được

\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)

\(VT=VP\)=> đpcm

9 tháng 10 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)

16 tháng 12 2018

Ta có : \(x=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}.\dfrac{\sqrt{\sqrt{3}+\sqrt{2}}}{\sqrt{\sqrt{3}-\sqrt{2}}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{1}}=\sqrt{2}\)

Thay \(x=\sqrt{2}\) vào biểu thức A ta được :

\(A=\left(\sqrt{2}^3-2\sqrt{2}+1\right)^{2012}=1^{2012}=1\)

Vậy \(A=1\)

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
14 tháng 4 2017

1) \(1019x^2+18y^4+1007z^2\)

\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)

\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)

14 tháng 4 2017

mơn bạn!!

31 tháng 12 2022

c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6

=>5y^2=45 và x^2=13-y^2

=>y^2=9 và x^2=4

=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)

=>x=1 và y=169/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)

=>x+1=11/9 và y+4=-11/19

=>x=2/9 và y=-87/19

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)