K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Ta có \(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{ab}=1+\dfrac{a+b}{ab}+\dfrac{1}{ab}=1+\dfrac{a+b+1}{ab}=1+\dfrac{1+1}{ab}=1+\dfrac{2}{ab}\)

Áp dụng bđt cosi ta có

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\Leftrightarrow ab\le\dfrac{1}{4}\Leftrightarrow\dfrac{2}{ab}\ge8\Leftrightarrow1+\dfrac{2}{ab}\ge9\Leftrightarrow A\ge9\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow\)\(a=b=0,5\)

Vậy GTNN của A là 9 và xảy ra khi a=b=0,5

2 tháng 12 2018

\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{ab}\)

\(A=1+\dfrac{a+b}{ab}+\dfrac{1}{ab}\)

Mà a+b=1

nên \(A=1+\dfrac{1}{ab}+\dfrac{1}{ab}=1+\dfrac{2}{ab}\)

Ta có:

a+b=1

Áp dụng bđt Cosi

\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\)

\(\Rightarrow1\ge4ab\Leftrightarrow ab\le\dfrac{1}{4}\)

Ta có:

\(A=1+\dfrac{2}{ab}\ge1+\dfrac{\dfrac{2}{1}}{4}=1+8=9\)

Dấu bằng xảy ra khi \(\) \(\left\{{}\begin{matrix}a+b=1\\a=b\end{matrix}\right.\)

\(\Rightarrow a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

NV
28 tháng 1 2019

\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{1}{2}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)

\(B=a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}+4\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2}{ab}+4\ge\dfrac{1}{2}+2.4+4=\dfrac{25}{2}\)

\(\Rightarrow B_{min}=\dfrac{25}{2}\) khi \(a=b=\dfrac{1}{2}\)

22 tháng 12 2021

\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)

Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)

\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)

 

18 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^3}{\left(1-a\right)^2}+\dfrac{1-a}{8}+\dfrac{1-a}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1-b\right)^2}+\dfrac{1-b}{8}+\dfrac{1-b}{8}\ge\dfrac{3b}{4}\\\dfrac{c^3}{\left(1-c\right)^2}+\dfrac{1-c}{8}+\dfrac{1-c}{8}\ge\dfrac{3c}{4}\end{matrix}\right.\)

\(\Rightarrow P+\dfrac{6-2\left(a+b+c\right)}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow P\ge\dfrac{1}{4}\)

Vậy \(P_{min}=\dfrac{1}{4}\)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

18 tháng 5 2017

đó đâu phải BĐT cauchy-Schwarz đâu bạn ơi

29 tháng 11 2018

a) \(P=\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}=\dfrac{a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{a\sqrt{a}-a\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

b) Ta có \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\Leftrightarrow ab-a-b+1+2\sqrt{ab}=1\Leftrightarrow ab=\left(\sqrt{a}-\sqrt{b}\right)^2\Leftrightarrow\left(\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\right)^2=1\Leftrightarrow\left|\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\right|=1\Leftrightarrow\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=1\Leftrightarrow P=1\)(Vì b>a>0)

Vậy \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\) thì P=1

NV
11 tháng 2 2020

Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?

\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)

Áp dụng xuống dưới ta có:

\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)

11 tháng 2 2020

mình vt nhầm số 9