K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 12 2018

\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{1}{2}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)

\(ab+\dfrac{1}{ab}=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16}.\dfrac{1}{ab}\ge\dfrac{1}{2}+\dfrac{15}{16}.4=\dfrac{17}{4}\)

Dấu "=" khi \(a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a)

Sử dụng pp biến đổi tương đương:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)

Ta có đpcm.

b) Áp dụng công thức của phần a ta có:

\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)

Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)

Do đó:

\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)

Cộng theo vế các BĐT trên thu được:

\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)

\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

11 tháng 2 2020

Rõ ràng ở bài này không thể dùng Svacxo trực tiếp.

\(\frac{1}{ab}+\frac{3}{a^2+b^2+ab}=\left(\frac{x}{ab}+\frac{3}{a^2+ab+b^2}\right)+\frac{1-x}{ab}\), với \(0\le x\le1\)

Ta có \(\frac{1-x}{ab}\ge\frac{4\left(1-x\right)}{\left(a+b\right)^2}=4\left(1-x\right)\)

\(\frac{x}{ab}+\frac{3}{a^2+ab+b^2}\ge\frac{\left(\sqrt{x}+\sqrt{3}\right)^2}{ab+\left(a^2+ab+b^2\right)}=\left(\sqrt{x}+\sqrt{3}\right)^2\)

\(\Rightarrow\frac{1}{ab}+\frac{3}{a^2+ab+b^2}\ge4\left(1-x\right)+\left(\sqrt{x}+\sqrt{3}\right)^2\)\(\forall0\le x\le1\)

Dấu "=" khi \(\left\{{}\begin{matrix}a=b=\frac{1}{2}\\\frac{\sqrt{x}}{ab}=\frac{\sqrt{3}}{a^2+ab+b^2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=b=\frac{1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy số thực x thích hợp để điều chỉnh là \(x=\frac{1}{3}\)

\(\frac{1}{ab}+\frac{3}{a^2+ab+b^2}\ge4\left(1-\frac{1}{3}\right)+\left(\sqrt{\frac{1}{3}}+\sqrt{3}\right)^2=\frac{8}{3}+\frac{16}{3}=8\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{1}{1+ab}+\frac{a^2}{a+ab}+\frac{b^2}{b+ab}\geq \frac{(1+a+b)^2}{1+ab+a+ab+b+ab}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+1)^2}{a+b+1+3ab}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+1)^2}{a+b+1+3(3-a-b)}=\frac{(a+b+1)^2}{10-2(a+b)}\)

Theo giả thiết:

\(3=a+b+ab\Leftrightarrow 4=a+b+ab+1=(a+1)(b+1)\)

\(\leq \left (\frac{a+b+2}{2}\right)^2\) (theo BĐT AM-GM)

suy ra \(a+b+2\geq 4\Leftrightarrow a+b\geq 2\) (với \(a,b>0\) )

Do đó: \((a+b+1)^2\geq 9\) (1)

\(10-2(a+b)\leq 10-2.3=4; 10-2(a+b)=4+2ab>0\)

\(\Rightarrow \frac{1}{10-2(a+b)}\geq \frac{1}{6}\) (2)

Từ \((1);(2)\Rightarrow A\geq \frac{(a+b+1)^2}{10-2(a+b)}\geq \frac{9}{6}=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=1\)

23 tháng 11 2017

Hong Ra On Cái đó là BĐT Cauchy này nè :

\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\)

Áp dụng vào:

\(\left(a+1\right)\left(b+1\right)\le\dfrac{\left(a+b+1+1\right)^2}{4}=\left(\dfrac{a+b+2}{2}\right)^2\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

20 tháng 5 2018

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bđt Cauchy ta có :

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=3\)

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

10 tháng 7 2017

1) Đặt \(\dfrac{b\sqrt{a-1}+a\sqrt{b-1}}{ab}\) là A

\(\)\(A=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-1}}{b}\)

\(\left(\dfrac{\sqrt{a-1}}{a}\right)^2=\dfrac{a-1}{a^2}=\dfrac{1}{a}-\dfrac{1}{a^2}=\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)\)

\(\Rightarrow\)\(\dfrac{\sqrt{a-1}}{a}=\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\)

Tương tự: \(\dfrac{\sqrt{b-1}}{b}=\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\)

Áp dụng BĐT Cauchy, ta có:

\(\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\le\dfrac{\dfrac{1}{a}+\left(1-\dfrac{1}{a}\right)}{2}=\dfrac{1}{2}\)

Tương tự: \(\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\le\dfrac{1}{2}\)

Cộng vế theo vế của 2 BĐT vừa chứng minh, ta được:

\(A\le1\left(đpcm\right)\)

11 tháng 7 2017

Xét: \(a^2+\dfrac{2}{a^3}=\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{a^3}+\dfrac{1}{a^3}\left(1\right)\)

Áp dụng BĐT Cauchy cho 5 số dương trên, ta có: \(\left(1\right)\ge5\sqrt[5]{\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{a^3}.\dfrac{1}{a^3}}=5\sqrt[5]{\dfrac{1}{27}}=\dfrac{5\sqrt[5]{9}}{3}\left(đpcm\right)\)

Dấu ''='' xảy ra khi và chỉ khi \(\dfrac{1}{3}a^2=\dfrac{1}{a^3}\Leftrightarrow a=\sqrt[5]{3}\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

Ta có:

\(\sum \frac{1}{a+ab}\geq \frac{3}{abc+1}\Leftrightarrow \sum \frac{abc+1}{a(b+1)}\geq 3\)

\(\Leftrightarrow \sum \frac{bc}{b+1}+\sum\frac{1}{a(b+1)}\geq 3\)

\(\Leftrightarrow \sum \frac{b(c+1)}{b+1}+\sum \frac{a+1}{a(b+1)}\geq 6\)

BĐT trên luôn đúng vì theo BĐT AM-GM thì:

\(\sum \frac{b(c+1)}{b+1}+\sum \frac{a+1}{a(b+1)}=\frac{b(c+1)}{b+1}+\frac{c(a+1)}{c+1}+\frac{a(b+1)}{a+1}+\frac{a+1}{a(b+1)}+\frac{b+1}{b(c+1)}+\frac{c+1}{c(a+1)}\)

\(\geq 6\sqrt[6]{\frac{abc(a+1)^2(b+1)^2(c+1)^2}{abc(a+1)^2(b+1)^2(c+1)^2}}=6\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=1\)