Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thôi làm luôn tìm ko ra thì chỉ phí time
Ta cm bổ đề
\(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\Leftrightarrow\sqrt{\frac{b+c+d}{a}}\le\frac{a+b+c+d}{2a}\)
\(=\frac{\frac{b+c+d}{a}+1}{2}\ge\sqrt{\frac{b+c+d}{a}}\) (đúng)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế
\(VT\ge\frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2=VP\)
bài này vừa làm hôm qua xong chả nhớ ở web nào cả
nhưng c/m \(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\) bằng AM-GM nhé đợi t tìm link cho đỡ phải làm lại
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+b+c)(1+b+c)\geq (a+b+c)^2\Rightarrow \sqrt{a^2+b+c}\geq \frac{a+b+c}{\sqrt{1+b+c}}\)
\(\Rightarrow \frac{a}{\sqrt{a^2+b+c}}=\frac{a\sqrt{1+b+c}}{a+b+c}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\leq \frac{a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}}{a+b+c}\)
Tiếp tục sd BĐT Bunhiacopxky:
\((a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b})^2\leq (a+b+c)(a+ab+ac+b+ba+bc+c+ca+cb)\)
\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a+b+c+2ab+2bc+2ac)}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3\Rightarrow a+b+c\leq a^2+b^2+c^2\)
Do đó:
\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac)}\)
\(=\sqrt{(a+b+c)^3}\)
\(\Rightarrow \text{VT}\leq \frac{\sqrt{(a+b+c)^3}}{a+b+c}=\sqrt{a+b+c}\leq \sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Với a,b,c > 0 ta có :
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+\left(b+c\right)}{2}}=\frac{2a}{a+b+c}\)( Áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\) )
Tương tự ta cũng có :
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng 3 bất đẳng thức trên vế với vế , ta được :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu " = " xay ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\), vô nghiệm vì a,b,c >0
Do đó : \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(1\right)\)
Lại có :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng lại ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2 ) \(\Rightarrowđpcm\)
Chúc bạn học tốt !!
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\sqrt{\frac{a}{a+bc}}=\frac{a}{\sqrt{a^2+abc}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Tương tự \(\sqrt{\frac{b}{b+ca}}=\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}};\sqrt{\frac{c}{c+ab}}=\frac{c}{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow VT=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\le\frac{a}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{2}\left(\frac{1}{b+c}+\frac{1}{b+a}\right)+\frac{c}{2}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
\(=\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra tại \(a=b=c=3\)
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
Câu trả lời hay nhất: Bài này áp dụng BĐT Cauchy (Cô-si) cho 2 số.
Ta có: a^2/b + b >= 2.căn[(a^2/b).b] = 2.căn(a^2) = 2|a| >= 2a
Tương tự, b^2/c + c >= 2|b| >= 2b
................c^2/a + a >= 2|c| >= 2c
Cộng vế với vế, ta được:
a^2/b + b^2/c + c^2/a + a + b + c >= 2a + 2b + 2c
<=> a^2/b + b^2/c + c^2/a >= a + b + c (điều phải chứng minh)
k cho mk nha
doc sai de a