Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x=a+b+c\\y=ab+bc+ca\end{matrix}\right.\) khi đó \(BDT\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}\le\dfrac{12+4x+y}{9+4x+2y}\)
\(\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}-1\le\dfrac{12+4x+y}{9+4x+2y}-1\)
\(\Leftrightarrow\dfrac{2x+3-xy}{x^2+2x+y+xy}\le\dfrac{3-y}{9+4x+2y}\)
\(\Leftrightarrow\dfrac{5x^2-3x^2y-xy^2-6xy+24x+y^2+3y+27}{\left(4x+2y+9\right)\left(x^2+xy+2x+y\right)}\le0\)
Đúng vì \(\dfrac{5}{3}x^2y\ge5x^2;\dfrac{x^2y}{3}\ge y^2;xy^2\ge9x;5xy\ge15x;xy\ge3y;x^2y\ge27\)
Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.
\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)
\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Xét: \(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}+\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)
\(\Leftrightarrow a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}+1-\dfrac{a^2}{a^2+1}+1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}\)
\(\Leftrightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)+3-\left(\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)
Xét \(3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\) ( 3 )
Xét \(3-\left(\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2}{a^2+1}\le\dfrac{a^2}{2a}=\dfrac{a}{2}\\\dfrac{b^2}{b^2+1}\le\dfrac{b^2}{2b}=\dfrac{b}{2}\\\dfrac{c^2}{c^2+1}\le\dfrac{c^2}{2c}=\dfrac{c}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
\(\Rightarrow3-\left(\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\) ( 4 )
Từ ( 3 ) và ( 4 ) cộng theo từng vế
\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)
\(\Leftrightarrow\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge3\)
\(\Rightarrow\) ( đpcm )
Lời giải:
ĐKĐB \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
\(\Leftrightarrow 1-\frac{a}{a+1}+1-\frac{b}{b+1}+1-\frac{c}{c+1}=2\)
\(\Leftrightarrow \frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)
-----------------------------------------------------------
Ta có: \(\text{VT}=1-\frac{8a^2}{8a^2+1}+1-\frac{8b^2}{8b^2+1}+1-\frac{8c^2}{8c^2+1}\)
\(\Leftrightarrow \text{VT}=3-\underbrace{\left(\frac{8a^2}{8a^2+1}+\frac{8b^2}{8b^2+1}+\frac{8c^2}{8c^2+1}\right)}_{M}\) (1)
Áp dụng BĐT AM-GM:
\(4a^2+1\geq 4a\Rightarrow 8a^2+1=4a^2+(4a^2+1)\geq 4a^2+4a\)
\(\Rightarrow \frac{8a^2}{8a^2+1}\leq \frac{8a^2}{4a^2+4a}=\frac{2a}{a+1}\)
Thực hiện tương tự cho các phân thức còn lại và cộng theo vế:
\(\Rightarrow M\leq 2\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right)=2\) (2)
Từ \((1);(2)\Rightarrow \text{VT}\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
Ta có \(a+b+c=abc\Leftrightarrow\dfrac{a+b+c}{abc}=1\) \(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
Lại có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\Leftrightarrow2^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) (đpcm)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(\Rightarrow\dfrac{1}{a}=\left(\dfrac{1}{2}-\dfrac{1}{b}\right)+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{b-2}{2b}+\dfrac{c-2}{2c}\)
Dễ dàng chứng minh \(\dfrac{b-2}{2b},\dfrac{c-2}{2c}\) là các số dương.
Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(\dfrac{b-2}{2b}+\dfrac{c-2}{2c}\ge2\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{4bc}}=\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{bc}}\)
\(\Rightarrow\dfrac{1}{a}\ge\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{bc}}\left(1\right)\)
CMTT ta có: \(\left\{{}\begin{matrix}\dfrac{1}{b}\ge\sqrt{\dfrac{\left(c-2\right)\left(a-2\right)}{ca}}\left(2\right)\\\dfrac{1}{c}\ge\sqrt{\dfrac{\left(a-2\right)\left(b-2\right)}{ab}}\left(3\right)\end{matrix}\right.\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{1}{abc}\ge\dfrac{\left(a-2\right)\left(b-2\right)\left(c-2\right)}{abc}\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\left(đpcm\right)\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\Leftrightarrow a=b=c=3\)
Đồng thời chỉ ra phương pháp nhé!!