K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 11 2017

Lời giải:

ĐKĐB \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

\(\Leftrightarrow 1-\frac{a}{a+1}+1-\frac{b}{b+1}+1-\frac{c}{c+1}=2\)

\(\Leftrightarrow \frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)

-----------------------------------------------------------

Ta có: \(\text{VT}=1-\frac{8a^2}{8a^2+1}+1-\frac{8b^2}{8b^2+1}+1-\frac{8c^2}{8c^2+1}\)

\(\Leftrightarrow \text{VT}=3-\underbrace{\left(\frac{8a^2}{8a^2+1}+\frac{8b^2}{8b^2+1}+\frac{8c^2}{8c^2+1}\right)}_{M}\) (1)

Áp dụng BĐT AM-GM:

\(4a^2+1\geq 4a\Rightarrow 8a^2+1=4a^2+(4a^2+1)\geq 4a^2+4a\)

\(\Rightarrow \frac{8a^2}{8a^2+1}\leq \frac{8a^2}{4a^2+4a}=\frac{2a}{a+1}\)

Thực hiện tương tự cho các phân thức còn lại và cộng theo vế:

\(\Rightarrow M\leq 2\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right)=2\) (2)

Từ \((1);(2)\Rightarrow \text{VT}\geq 1\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

20 tháng 6 2018

Đặt \(a^{\dfrac{1}{9}};b^{\dfrac{1}{9}};c^{\dfrac{1}{9}}\rightarrow x;y;z\)\(\left(x;y;z>0;xyz=1\right)\)

Ta có BĐT:\(\dfrac{1}{\sqrt{8x^9+1}}\ge\dfrac{1}{x^8+x^4+1}\)

\(\Leftrightarrow\dfrac{\dfrac{\left(x-1\right)^2x^4\left(x^{10}+2x^9+3x^8+4x^7+7x^6+10x^5+13x^4+8x^3+6x^2+4x+2\right)}{\left(x^2-x+1\right)^2\left(x^2+x+1\right)^2\left(2x^3+1\right)\left(x^4-x^2+1\right)^2\left(4x^6-2x^3+1\right)}}{\dfrac{1}{\sqrt{8x^9+1}}+\dfrac{1}{x^8+x^4+1}}\ge0\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(A\ge\dfrac{1}{x^8+x^4+1}+\dfrac{1}{y^8+y^4+1}+\dfrac{1}{z^8+z^4+1}\ge1\)

Dấu "=" khi \(x=y=z=a=b=c=1\)

20 tháng 6 2018

đặt a,b,c=1/9 hả bạn

28 tháng 10 2017

Đặt \(\left\{{}\begin{matrix}x=a+b+c\\y=ab+bc+ca\end{matrix}\right.\) khi đó \(BDT\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}\le\dfrac{12+4x+y}{9+4x+2y}\)

\(\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}-1\le\dfrac{12+4x+y}{9+4x+2y}-1\)

\(\Leftrightarrow\dfrac{2x+3-xy}{x^2+2x+y+xy}\le\dfrac{3-y}{9+4x+2y}\)

\(\Leftrightarrow\dfrac{5x^2-3x^2y-xy^2-6xy+24x+y^2+3y+27}{\left(4x+2y+9\right)\left(x^2+xy+2x+y\right)}\le0\)

Đúng vì \(\dfrac{5}{3}x^2y\ge5x^2;\dfrac{x^2y}{3}\ge y^2;xy^2\ge9x;5xy\ge15x;xy\ge3y;x^2y\ge27\)

6 tháng 3 2021

* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)

Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)

Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)

Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 3 2021

cảm ơn ạ

22 tháng 10 2017

Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.

\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)

\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)

26 tháng 7 2018

Help me !!!!!!!!!

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Bạn xem lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcge0a2b2c21cmr-dfracc1abdfracb1acdfraca1bcge1.1019784090594