K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Vì a/a+b > 0 nên a/a+b > a/a+b+c

Tương tự : b/b+c > b/a+b+c ; c/c+a > c/a+b+c

=> m > a+b+c/a+b+c = 1 (1)

Lại có : 0 < a/a+b < 1 nên a/a+b < a+c/a+b+c

Tương tự : b/b+c < b+a/a+b+c ; c/c+a < c+b/a+b+c

=> m < 2a+2b+2c/a+b+c = 2 (2)

Từ (1) và (2) => 1 < m < 2

=> m ko phải là số nguyên

k mk nha

6 tháng 5 2016

Dễ ý

Nếu a,b,c > 0

--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi

10 tháng 11 2021

ngu à ví du6 1/3 +1/3 +1/3 = 0 đấy

9 tháng 2 2016

M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)

= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z. 

9 tháng 2 2016

Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc

15 tháng 8 2016

Ta có : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Vì vai trò của a,b,c là như nhau nên ta giả sử \(0< a< b< c\)

Khi đó : \(\frac{a}{a+b}>\frac{a}{a+b+c}\)\(\frac{b}{b+c}>\frac{b}{a+b+c}\)\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)(1)

Lại có : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\) ;  \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng các bđt trên theo vế : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}+\frac{a+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra ta có : 1 < M < 2

=> M không thể là số nguyên.

15 tháng 8 2016

Đề là thế này ak:

Chứng minh \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số nguyên

14 tháng 8 2016

thiếu đề hay soa í p

28 tháng 12 2015

ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)

ta lại có tương tự M<2

suy ra Mko ơphair số nguyên

12 tháng 3 2020

Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+c+b};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

=> M>1 (1)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}=2\)

=> M<2 (2)

Từ (1)(2) => 1<M<2 => M không là số nguyên (đpcm)

12 tháng 3 2020

Tớ thấy mọi người hay chứng minh M là số nguyên 

4 tháng 4 2016

Ta có : a/a+b > a/a+b+c       (a,b,c > 0)

b/b+c > b/b+c+a

c/c+a > c/c+a+b

=> M > 1     (1)

Mặt khác : a/a+c < 1 => a/a+b < a+c/a+b+c     (a,b,c > 0)

                                   b/b+c < b+a/b+c+a

                                   c/c+a < c+b/c+a+b

=> M < 2        (2)

Từ (1) và (2) = > 1 < M < 2

=> M ko phải là số nguyên.  (đpcm)

Ai k mk mk k lại cho!!