Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)
= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z.
Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc
Vì a/a+b > 0 nên a/a+b > a/a+b+c
Tương tự : b/b+c > b/a+b+c ; c/c+a > c/a+b+c
=> m > a+b+c/a+b+c = 1 (1)
Lại có : 0 < a/a+b < 1 nên a/a+b < a+c/a+b+c
Tương tự : b/b+c < b+a/a+b+c ; c/c+a < c+b/a+b+c
=> m < 2a+2b+2c/a+b+c = 2 (2)
Từ (1) và (2) => 1 < m < 2
=> m ko phải là số nguyên
k mk nha
ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)
ta lại có tương tự M<2
suy ra Mko ơphair số nguyên
Cho a, b, c > 0. Chứng minh rằng : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo vế 2 bất đẳng thức trên ta có:
M >\(\frac{a+b+c}{a+b+c}\)
=>M>1 (1)
Aps dụng t/c (a;b>1) =>\(\frac{a}{b}<\frac{a+m}{b+m}\)Ta có:
\(\frac{a}{a+b}<\frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}<\frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}<\frac{c+b}{a+b+c}\)
Cộng theo vế 2 bất đẳng thức trên ta có:
M > \(\frac{2\left(a+b+c\right)}{a+b+c}\)
=>M>2 (2)
Tư (1) vs (2) => 1<M<2
=>M ko là số nguyên
Dễ ý
Nếu a,b,c > 0
--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi
ngu à ví du6 1/3 +1/3 +1/3 = 0 đấy