Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 2 biểu thức mà c/m 1 biểu thức M là sao
Biểu thức N vứt sọt à hay làm cái j v :V
tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M >=(a+b+c)/8
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
Cho a,b,c>0 CMR
\( \frac{a^3}{bc}+ \frac{b^3}{ac}+ \frac{c^3}{ab}\ge \frac{3(a^2+b^2+c^2)}{a+b+c} \)
Đầu tiên ta nhắc lại một kết quả sau: Với mọi số dương \(x,y\) thì \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}.\) Thực vậy bất đẳng thức tương đương với \(3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\Leftrightarrow2\left(x^2+y^2\right)-4xy\ge0\Leftrightarrow2\left(x-y\right)^2\ge0.\) (Đúng).
Đặt vế trái của bất đẳng thức là \(S\) và đặt \(T=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}.\) Áp dụng hằng đẳng thức \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right),\) ta được
\(S-T=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ca+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\).
Suy ra \(S=T.\) Ta có
\(2S=S+T=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
\(=\left(a+b\right)\frac{a^2-ab+b^2}{a^2+ab+b^2}+\left(b+c\right)\frac{b^2-bc+c^2}{b^2+bc+c^2}+\left(c+a\right)\frac{c^2-ca+a^2}{c^2+ca+a^2}\)
\(\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}.\)
Do đó \(2S\ge\frac{2\left(a+b+c\right)}{3}\to S\ge\frac{a+b+c}{3}.\)
Cho mk hỏi tại sao lại phải đặt thêm biểu thức T vậy ???
Mk vẫn ko hiểu cho lắm !!!