Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; \(\frac{a+b-3c}{c}+4=\frac{b+c-3a}{a}+4=\frac{c+a-3b}{b}+4 \)
<=>\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b} \)
Mà a,b,c>0=>a+b+c>0
=>\(\frac{1}{a}=\frac{1}{c}=\frac{1}{b} \)
=>a=b=c(đpcm)
Ta có : \(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\)
\(\dfrac{b}{b+c}>\dfrac{b}{b+a+c}\)
\(\dfrac{c}{c+a}>\dfrac{c}{c+a+b}\)
=> M > \(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)(1)
Lại có : \(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\)
\(\dfrac{b}{b+c}< \dfrac{b+c}{b+c+a}\)
\(\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)
=> M < \(\dfrac{a+b+b+c+c+a}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1) và (2) suy ra : 1<M<2
=> M không là số nguyên
Vậy................
\(\left(a-b\right)^2\ge0< =>a^2+b^2\ge2ab\\ \left(b-c\right)^2\ge0< =>b^2+c^2\ge2bc\\ \left(c-a\right)^2\ge0< =>a^2+c^2\ge2ac\) ;
Cộng các vế tương ứng của 3 bất pt trên ta đc:
\(a^2+b^2+c^2\ge ab+bc+ac\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
<=>\(0\ge3\left(ab+bc+ac\right)\)
=> ĐPCM
Dấu = xảy ra a=b=c=0
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Từ \(\dfrac{x}{y}=\dfrac{9}{7}\)ta có : \(x=\dfrac{9y}{7}\)(1) ;
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\)ta có: \(z=\dfrac{3y}{7}\)(2);
Thay (1) và (2) vào biểu thức trên ta có:
\(\left(\dfrac{9y}{7}\right)^2-\left(\dfrac{9y^2}{7}\right)+\left(\dfrac{3y}{7}\right)^2=27=>\dfrac{81y^2}{49}-\dfrac{63y^2}{49}+\dfrac{9y^2}{49}=27\)
\(=>\dfrac{27y^2}{49}=27=>27y^2=27.49=1323\)
\(=>y^2=1323:27=49=>y=7;-7\)
Lần lượt thay y =7; -7 vào hệ thức ta tìm được:
\(y=7;x=9;z=3\)và \(y=-7;x=-9;z=-3\)
CHÚC BẠN HỌC TỐT...
Ta có:
\(\dfrac{a}{b}=\dfrac{a.d}{b.d}\) và \(\dfrac{c}{d}=\dfrac{c.b}{d.b}\)
Từ trên suy ra :
Nếu ad < bc thì \(\dfrac{a}{b}< \dfrac{c}{d}\) \(\left(ĐPCM\right)\)
Ta có M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)
Vì vai trò a,b,c là như nhau nên ta giả sử 0<a<b<a
Khi đó :\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c};\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)
=>M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)
Lại có \(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c};\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\)
Cộng các bđt trên theo vế ta có:
M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}+\dfrac{a+b}{a+b+c}\)
=>M=\(\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
=>1<M<2
=>M không phải là số nguyên (đpcm)
Chúc Bạn Học Tốt