Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Note: Em không chắc.Rất mong được mọi người góp ý ạ,em chưa biết cách dùng sos nên đành dùng cách khác ạ.
BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^{ 4}+b^4+c^4+ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-ab\left(a^2+b^2\right)-bc\left(b^2+c^2\right)-ca\left(c^2+a^2\right)\ge0\) (*)
Dễ thấy BĐT trên là hệ quả của BĐT sau: \(a^4-ab\left(a^2+b^2\right)+b^4\ge0\) (1)
\(\Leftrightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)(2). Theo BĐT Cauchy-Schwarz dạng Engel,ta có:
\(VT=\frac{\left(a^2\right)^2}{1}+\frac{\left(b^2\right)^2}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\)
Ta luôn có \(\left(a-b\right)^2\ge0\forall a,b\inℝ\Rightarrow a^2+b^2\ge2ab\)
Suy ra: \(VT=a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)=VP\)
Do vậy BĐT (2) đúng suy ra BĐT (1) đúng (do 2 BĐT này tương đương nhau)
Tương tự với hai BĐT còn lại ta cũng có: \(b^4-bc\left(b^2+c^2\right)+c^4\ge0\);
\(c^4-ca\left(c^2+a^2\right)+a^4\ge0\). Cộng theo vế 3 BĐT trên suy ra (*) đúng hay ta có Q.E.D
\(2a^4+a+2b^4+b+2c^4+c\ge3\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)\ge3\left(a^3+b^3+c^3\right)-3\)
\(=2\left(a^3+b^3+c^3\right)+a^3+1+1+b^3+1+1+c^3+1+1-9\)
\(\ge2\left(a^3+b^3+c^3\right)+3\left(a+b+c\right)-9=2\left(a^3+b^3+c^3\right)\)
\(\Rightarrow a^4+b^4+c^4\ge a^3+b^3+c^3\)
\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)
CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)
Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)
=> \(ab+bc+ca\le a+b+c\)
=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)
Dấu bằng khi a=b=c=1
Mình có một cách khác. Các bạn xem nhé!
Đặt a = b = c . Ta có:
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)
\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)
\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)
Dấu = xảy ra khi a =b = c = 1
Ta có: \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
<=> \(4a^2+4b^2+4c^2+4d^2\ge4ab+4ac+4ad\)
<=> \(\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+a^2\ge0\)
<=> \(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)luôn đúng
Vậy \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\) đúng
Dấu "=" xảy ra <=> a = 0; a - 2b = 0; a - 2c = 0; a - 2d = 0 <=> a = b = c = d = 0
đặt:
\(S=\frac{a^3+b^3+c^3+d^3}{a+b+c+d}=\frac{a^3}{a+b+c+d}+\frac{b^3}{a+b+c+d}+\frac{c^3}{a+b+c+d}+\frac{d^3}{a+b+c+d}\)
\(=\frac{a^4}{a^2+ab+ac+ad}+\frac{b^4}{ab+b^2+bc+bd}+\frac{c^4}{ac+bc+c^2+cd}+\frac{d^4}{ad+bd+cd+d^2}\)
áp dụng bất đẳng thức schwarts ta có:
\(S\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)
áp dụng bất đẳng thức bunhicốpski ta có:
\(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow S\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\frac{a^2+b^2+c^2+d^2}{4}\ge\frac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\frac{4.1}{4}=1\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)
dấu bằng xảy ra khi a=b=c=d=1