K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{c+b}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+c+b}{c+b}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{c+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3\)

\(=4034.\dfrac{1}{2}-3=2014\)

3 tháng 1 2018

Guể?

\(\dfrac{1}{c+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}=\dfrac{1}{2}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{c+a}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)=\dfrac{4034}{2}=2017\)

\(\Rightarrow1+\dfrac{a}{c+b}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}=2017\)

\(\Rightarrow\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=2014\)

27 tháng 12 2017

\(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\\ \Rightarrow P+3=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)\\ \Rightarrow P+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\\ =\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)=2018.\dfrac{2021}{4034}=1011.000992\\ \Rightarrow P=1008.000992\)

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

17 tháng 5 2017

Sửa đề:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2001.\dfrac{1}{10}-3\)

\(=200,1-3=197,1\)

Vậy S = 197,1

17 tháng 5 2017

kcj

14 tháng 2 2018

Câu hỏi của Hạ Anh Thư - Toán lớp 7 | Học trực tuyến

2 tháng 4 2017

\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\Rightarrow S=2016.\dfrac{1}{90}-3\)

\(\Rightarrow S=\dfrac{97}{2}\)

5 tháng 5 2017

Cho mik hỏi chút: làm sao có "-3" vậy bn?

10 tháng 2 2018

https://hoc24.vn/hoi-dap/question/559178.html

Tương tự

12 tháng 2 2018

không đx bạn ạ

13 tháng 3 2017

theo bài ra ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{`1}{4}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{4}\)

\(\Rightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\dfrac{2016}{4}\)

\(\Rightarrow\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)

\(\Rightarrow3+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=504-3\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)

vậy \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)

13 tháng 3 2017

(a+b+c)(1/a+b+1/b+c+1/c+a)=(a+b+c)/4

(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)=(a+b+c)/4

=> 1+c/(a+b)+1+a/(b+c)+1+b/(c+a)=2016/4

<=>c/(a+b)+a/(b+c)+b/(c+a)+3=504

=> A=a/(b+c)+b/(c+a)+c/(a+b)=504-3=501