Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\Rightarrow S=2016.\dfrac{1}{90}-3\)
\(\Rightarrow S=\dfrac{97}{2}\)
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi
1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)
\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)
Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)
Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)
\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)
\(P=\dfrac{2+3+4+5+...+17}{2}\)
\(P=\dfrac{152}{2}=76\)
2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)
\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)
b) Tìm min
\(SV=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
\(SV=\left|x-2016\right|+\left|2018-x\right|+\left|x-2017\right|\)
\(SV\ge\left|x-2016+2018-x\right|+\left|x-2017\right|=2+\left|x-2017\right|\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2016\le x\le2018\\x=2017\end{matrix}\right.\Leftrightarrow x=2017\)
3) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=676\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=676\)
\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=673\)
A= \(\left(\dfrac{a}{b+c}+1\right)\)+\(\left(\dfrac{b}{a+c}+1\right)\)+\(\left(\dfrac{c}{a+b}+1\right)\)-3
= \(\dfrac{a+b+c}{b+c}\)+\(\dfrac{a+b+c}{a+c}\)+ \(\dfrac{c+a+b}{a+b}\) -3
= (a+b+c). (\(\dfrac{1}{b+c}\) + \(\dfrac{1}{a+c}\) + \(\dfrac{1}{a+b}\)) -3
= 2016. 1-3=2013
\(\dfrac{a+b+c}{b+c-2016+a+c+2015+a+b+1}=\dfrac{a+b+c}{2016}\)
Sau đó rút gọn đi rồi tính nha
STUDY WELL
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+b+c}{b+c-2016+a+c+2015+a+b+1}=\dfrac{a+b+c}{2016}\\ \Rightarrow\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2016}\\ \Rightarrow\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2016}\)
Sửa đề:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2001.\dfrac{1}{10}-3\)
\(=200,1-3=197,1\)
Vậy S = 197,1
theo bài ra ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{`1}{4}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}\left(a+b+c\right)\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{4}\)
\(\Rightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\dfrac{2016}{4}\)
\(\Rightarrow\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)
\(\Rightarrow3+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=504-3\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)
vậy \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)
(a+b+c)(1/a+b+1/b+c+1/c+a)=(a+b+c)/4
(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)=(a+b+c)/4
=> 1+c/(a+b)+1+a/(b+c)+1+b/(c+a)=2016/4
<=>c/(a+b)+a/(b+c)+b/(c+a)+3=504
=> A=a/(b+c)+b/(c+a)+c/(a+b)=504-3=501