K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

Với a, b, c dương thỏa mãn a + b + c = 3, ta có: \(\Sigma\frac{a}{ab+1}=\Sigma\left(a-\frac{a^2b}{ab+1}\right)\ge3-\Sigma\frac{a^2b}{2\sqrt{ab}}\)

\(=3-\frac{1}{2}\Sigma\sqrt{a^3b}\)

Ta đi chứng minh BĐT phụ sau: \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)

Đặt \(\left(a^2+bc-ab;b^2+ca-bc;c^2+ab-ca\right)\rightarrow\left(x;y;z\right)\)

Áp dụng BĐT quen thuộc sau: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\), ta được:

4cwbKF8.png(*)

(Mình gõ bằng chương trình Universal Math Solver, không hiện ảnh thì vô thống kê hỏi đáp của mình, chiều ngày 31/5/2020)

Khai triển VP của BĐT (*), ta được biểu thức: \(3\left(a^3b+b^3c+c^3a\right)\)

Vậy ta được ​\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)

​Áp dụng, ta được: \(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\)

\(\Rightarrow\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\le3\)

\(\Rightarrow3-\frac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\frac{3}{2}=\frac{3}{2}\)

hay \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi a = b = c = 1

31 tháng 5 2020

tôi yêu đảng / yêu nước việt nam / hồ chí minh muôn năm

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

22 tháng 9 2020

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

1 tháng 6 2018

\(VT=\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\)

\(=\frac{ab}{ab+\left(a+b+c\right)c}+\frac{ac}{ac+\left(a+b+c\right)b}+\frac{bc}{bc+\left(a+b+c\right)a}\)

\(=\frac{ab}{\left(b+c\right)\left(c+a\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Cần chứng minh \(\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow a^2b+a^2c+ab^2+ac^2+b^2c+bc^2\ge6abc\)

BĐT cuối luôn đúng theo AM-GM

16 tháng 8 2017

Áp dụng BĐT Cauchy Shwarz dạng Engel và BĐT AM - GM, ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\)

\(=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}\)

\(=a^3+b^3+c^3\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

14 tháng 6 2017

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{1}{abc}\left(a^6+b^6+c^6\right)\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)