Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo BĐT tam giác ta có
a+b>c
<=> a+b+c >2c
<=> 2>2c <=> 1>c
tương tự ta đc 1>a ; 1>b
giả sử: \(a>b>c>0\)
Xét hiệu:
\(3abc-a^2\left(b+c-a\right)-b^2\left(c+a-b\right)+c^2\left(a+b-c\right)\)
\(=3abc+a^3+b^3+c^3-ab^2-bc^2-ca^2-ba^2-cb^2-ba^2\)
\(=a^2\left(a-b\right)-b^2\left(a-b\right)-c\left(a+b\right)^2+c\left[a\left(b-c\right)-c\left(b-c\right)\right]\)
\(=\left(a-b\right)\left(a^2+b^2\right)-c\left(a-b\right)^2+c\left(a-c\right)\left(b-c\right)\)
\(=\left(a-b\right)^2\left(a+b-c\right)+c\left(b-c\right)\left(a-c\right)\)
Ta có:
\(a>b>c\Rightarrow a-b>0;a+b>0;b>c;a>c\)
=> Luôn đúng
Theo bất đẳng thức tam giác: \(\left\{{}\begin{matrix}a+b>c\Leftrightarrow a+b+c>2c\Leftrightarrow2c< 2\Leftrightarrow c< 1\\b+c>a\Leftrightarrow a+b+c>2a\Leftrightarrow2a< 2\Leftrightarrow a< 1\\a+c>b\Leftrightarrow a+b+c>2b\Leftrightarrow2b< 2\Leftrightarrow b< 1\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)\(\Rightarrow\left(1-b-a+ab\right)\left(1-c\right)>0\) \(\Rightarrow1-c-b+bc-a+ac+ab-abc>0\) \(\Rightarrow1+bc+ac+ab>2+abc\Leftrightarrow bc+ac+ab>1+abc\) \(\Rightarrow2ab+2bc+2ac>2+2abc\Leftrightarrow\left(a+b+c\right)^2>2+2abc+a^2+b^2+c^2\) \(\Rightarrow a^2+b^2+c^2+2abc+2< 4\Leftrightarrow a^2+b^2+c^2+2abc< 2\)(đpcm)
Ta có:
a < b + c
=> a + a <a + b + c
=> 2a < 2
--> a < 1
Tương tự ta có : b < 1,c < 1
Suy ra: (1 − a)(1 − b)(1 − c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < − 1 + ab + bc + ca
⇔ 2abc < − 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < a^2 + b^2 + c^2 – 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < (a + b + c)^2 − 2
⇔ a^2 + b^2 + c^2 + 2abc < 2^2−2 = 2
⇔ dpcm
ukm!khó bn nhỉ?đúng là 1 bài toán hay vs đáng cân nhắc ,tham khảo thêm.....mọi người nhớ kb với mik nha!!!yêu nhìu>_<
+ a + b + c = 2
+ a,b,c là độ dài 3 cạnh 1 tam giác
\(\Rightarrow a< b+c\)
=> a + a < a + b + c
=> 2a < 2 => a < 1
+ Tương tự ta cm đc : b < 1; c < 1
+ \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
=> \(1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc>0\)
\(\Rightarrow2-2\left(a+b+c\right)+2\left(ab+bc+ca\right)-2abc>0\)
\(\Rightarrow2-\left(a+b+c\right)^2+2\left(ab+bc+ca\right)-2abc>0\)
( do a + b + c = 2 )
\(\Rightarrow2-\left(a^2+b^2+c^2\right)-2abc>0\)
\(\Rightarrow a^2+b^2+c^2+2abc< 2\)
Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath
Tham khảo câu b
Bài 1:
a: \(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
b: \(=xy\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(xy-1\right)\)
c: \(=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
d: \(=x\left(x+y\right)+\left(x+y\right)\left(x-y\right)=\left(x+y\right)\left(2x-y\right)\)
e: \(=5xy\left(x-2y^2\right)\)
g: \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
h: \(=\left(x+2y\right)^2-16=\left(x+2y+4\right)\left(x+2y-4\right)\)
k: \(=2x^2-8x+3x-12=\left(x-4\right)\left(2x+3\right)\)
theo bất đẳng thức tam giác , ta có : a+b>c =>a+b+c>2c =>2>2c =>c<1 => 1-c<0
tương tự : 1-a<0 ; 1-b<0
=> (1-a)(1-b)(1-c)<0
=>1-b-a+ab-c+bc+ac-abc<0
=>2-2a-2b-2c+2ab+2bc+2ac-2abc<0 (1)
mà a+b+c=2 =>(a+b+c)^2=4 =>a^2+b^2+c^2+2ab+2bc+2ac=4
=>2ab+2bc+2ac=4-a^2-b^2-c^2
thay vào (1) ta được : 2-4+4-a^2-b^2-c^2-2abc<0
=> 2-(a^2+b^2+c^2+2abc)<0
=>a^2+b^2+c^2+2abc<2