K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

6 tháng 10 2019

\(sigma\frac{a}{1+b^2}=sigma\left(a-\frac{ab^2}{1+b^2}\right)\ge sigma\left(a\right)-sigma\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}>\frac{2018}{2003}\)

31 tháng 10 2018

\(A=\frac{ab}{a+c+b+c}+\frac{bc}{a+b+a+c}+\frac{ca}{a+b+b+c}\)

\(\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Nên max A là \(\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)

18 tháng 2 2020

Dùng bđt AM - GM cho 7 số; 2 số và 3 số không âm, ta được:

\(a^3c^2+a^3c^2+a^3c^2+b^3a^2+b^3a^2+1+1\ge7a\)(1)

\(b^3a^2+b^3a^2+b^3a^2+c^3b^2+c^3b^2+1+1\ge7b\)(2)

\(c^3b^2+c^3b^2+c^3b^2+a^3c^2+a^3c^2+1+1\ge7c\)(3)

\(\frac{a+b+c}{2}+\frac{9}{2\left(a+b+c\right)}\ge3\)

\(a+b+c\ge3\)

Từ (1); (2); (3) suy ra \(a^3c^2+b^3a^2+c^3b^2\ge\frac{7\left(a+b+c\right)}{5}-\frac{6}{5}\)

\(P=\text{Σ}_{cyc}\frac{a}{b^2}+\frac{9}{2\left(a+b+c\right)}=\text{Σ}_{cyc}a^3c^2+\frac{9}{2\left(a+b+c\right)}\)

\(\ge\frac{7\left(a+b+c\right)}{5}+\frac{9}{2\left(a+b+c\right)}-\frac{6}{5}\)

\(=\frac{a+b+c}{2}+\frac{9}{2\left(a+b+c\right)}+\frac{9\left(a+b+c\right)}{10}-\frac{6}{5}\)

\(\ge3+\frac{9}{10}.3-\frac{6}{5}=\frac{9}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha