K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Dùng bđt AM - GM cho 7 số; 2 số và 3 số không âm, ta được:

\(a^3c^2+a^3c^2+a^3c^2+b^3a^2+b^3a^2+1+1\ge7a\)(1)

\(b^3a^2+b^3a^2+b^3a^2+c^3b^2+c^3b^2+1+1\ge7b\)(2)

\(c^3b^2+c^3b^2+c^3b^2+a^3c^2+a^3c^2+1+1\ge7c\)(3)

\(\frac{a+b+c}{2}+\frac{9}{2\left(a+b+c\right)}\ge3\)

\(a+b+c\ge3\)

Từ (1); (2); (3) suy ra \(a^3c^2+b^3a^2+c^3b^2\ge\frac{7\left(a+b+c\right)}{5}-\frac{6}{5}\)

\(P=\text{Σ}_{cyc}\frac{a}{b^2}+\frac{9}{2\left(a+b+c\right)}=\text{Σ}_{cyc}a^3c^2+\frac{9}{2\left(a+b+c\right)}\)

\(\ge\frac{7\left(a+b+c\right)}{5}+\frac{9}{2\left(a+b+c\right)}-\frac{6}{5}\)

\(=\frac{a+b+c}{2}+\frac{9}{2\left(a+b+c\right)}+\frac{9\left(a+b+c\right)}{10}-\frac{6}{5}\)

\(\ge3+\frac{9}{10}.3-\frac{6}{5}=\frac{9}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

26 tháng 6 2020

\(A=\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)

\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)

\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ba}+\frac{ab}{ac+bc}\)

Đặt: \(ab=x;bc=y;ac=z\)=> xyz = 1; x,y,z>0

\(A=\frac{y}{x+z}+\frac{z}{y+x}+\frac{x}{z+y}=\frac{y^2}{xy+yz}+\frac{z^2}{yz+xz}+\frac{x^2}{zx+xy}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+xz\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z= 1 => a = b = c = 1

Vậy gtnn của A = 3/2 tại  a = b = c = 1

6 tháng 2 2021

Áp dụng BĐT Cauchy - Schwarz và Cauchy ta có:

\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\ge\frac{b^2+c^2}{a^2}+a^2\cdot\frac{9}{b^2+c^2}\) (Cauchy - Schwarz)

\(=\left(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\right)+8\cdot\frac{a^2}{b^2+c^2}\)

\(\ge2\sqrt{\frac{b^2+c^2}{a^2}\cdot\frac{a^2}{b^2+c^2}}+8\cdot\frac{b^2+c^2}{b^2+c^2}\) (BĐT Cauchy)

\(=2+8=10\)

Dấu "=" xảy ra khi: \(a=b\sqrt{2}=c\sqrt{2}\)

Vậy Min(P) = 10 khi \(a=b\sqrt{2}=c\sqrt{2}\)

20 tháng 11 2019

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

20 tháng 11 2019

Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)

Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b=  c = 2

20 tháng 11 2019

Có cách UCT :)

\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)

Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..

12 tháng 5 2019

Dùng Buniacoxki

=> MinP=9 khi a=b=c

13 tháng 5 2018

Với \(a=b=c=\frac{1}{3}\Rightarrow P=2019\)

Ta sẽ chứng minh \(P=2019\) là GTNN của \(P\)

Thật vậy \(2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\ge2019\)

\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-1\right)+\frac{\left(a+b+c\right)^2}{3\left(a^2+b^2+c^2\right)}-1\ge0\)

\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a+b+c\right)\right)+\frac{\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)}{3\left(a^2+b^2+c^2\right)}\ge0\)

\(\Leftrightarrow2018\left(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\right)-\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{3\left(a^2+b^2+c^2\right)}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\frac{2018}{b}-\frac{1}{3\left(a^2+b^2+c^2\right)}\right)\right)\ge0\) *Luôn đúng*

16 tháng 5 2017

Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)

Thì ta có:

\(\hept{\begin{cases}p^2-2q=3\\A=2p+\frac{q}{r}\end{cases}}\)

Ta có: \(3pr\le q^2\) (cái này dễ thấy nên mình không chứng minh nha)

\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}=\frac{6p}{2q}=\frac{6p}{p^2-3}\)

Thế vô A ta được

\(A=2p+\frac{q}{r}\ge2p+\frac{6p}{p^2-3}\)

Ta chứng minh \(2p+\frac{6p}{p^2-3}\ge9\)

\(\Leftrightarrow2p^3-9p^2+27\ge0\)

\(\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\) (đúng)

Vậy GTNN là A = 9

15 tháng 5 2017

bài này vừa read buổi tối này nek, xài UCT ,tiện thể cho hỏi lun do máy t lỗi hay do hệ thống z , k load bài nào luôn 

30 tháng 12 2016

\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)

\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 1 2017

tao ko biet