K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Ta có:\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{ab}{c}.\frac{bc}{a}\right)\)

\(=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)\)\(=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\)

Đặt \(A=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\)

\(\Rightarrow2A=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\)

Áp dụng BĐT Cauchy ta có:

\(2A\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}+2\sqrt{\frac{a^2c^2}{b^2}.\frac{a^2b^2}{c^2}}+2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}\)

\(=2\sqrt{c^4}+2\sqrt{a^4}+2\sqrt{b^4}=2a^2+2b^2+2c^2=2\)

\(\Rightarrow A\ge1\Rightarrow P^2=A+2\ge1+2=3\)

\(\Rightarrow P\ge\sqrt{3}\).Nên GTNN của P là \(\sqrt{3}\) đạt được khi \(a=b=c=\frac{\sqrt{3}}{3}\)

5 tháng 3 2018

Bạn ơi thật ra bạn ko cần dùng Cauchy, dùng BunhiaCopxki phát cuối là đc ^^. Mình giải ra lâu rồi :v

14 tháng 8 2017

a) Áp dụng bất đẳng thức Bnhiacopxki ta có :

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

3
22 tháng 10 2019

Câu 9.

a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)

b) Áp dụng BĐT Cauchy cho 2 số không âm:

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

22 tháng 10 2019

Câu 10. 

a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)

Vậy ​\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)