K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

20 tháng 12 2020

a) x2 - 5x - y2 -5y

= ( x2 - y2 ) + ( -5x - 5y)

= ( x - y ) ( x + y) - 5( x + y )

= ( x + y ) ( x - y -5)

b) x3 + 2x2 - 4x - 8

= x2 ( x + 2 ) - 4 ( x + 2 )

= ( x +2 ) ( x2 -4 )

= ( x+2)2 ( x-2)

20 tháng 12 2020

Bai 2 : 

a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)

\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)

\(=2x^2+2x+13-2x^2-2x+12=25\)

b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)

\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)

\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )

18 tháng 8 2020

Bài 1. 

a) A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2

\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxA = 2 <=> x = -2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)

Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4

=> MaxB = 49/8 <=> x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9

\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MaxC = 9 <=> x = -1

d) D = -8x2 + 4xy - y2 + 3 = -( 4x2 - 4xy + y2 ) - 4x2 + 3 = -( 2x - y )2 - 4x2 + 3

\(\hept{\begin{cases}-\left(2x-y\right)^2\le0\forall x,y\\-4x^2\le0\forall x\end{cases}}\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y=0\\4x=0\end{cases}}\Rightarrow x=y=0\)

=> MaxD = 3 <=> x = y = 0

18 tháng 8 2020

Bài 2.

a) A = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinA = 4 <=> x = 1

b) B = x2 - x + 1 = ( x2 - 2.1/2.x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MinB = 3/4 <=> x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [( x - 1 )( x + 6 )][( x + 2 )( x + 3)]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = [ ( x2 + 5x ) - 6 ][ ( x2 + 5x ) + 6 ]

C = ( x2 + 5x )2 - 36

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Đẳng thức xảy ra <=> \(x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

=> MinC = -36 <=> x = 0 hoặc x = -5

d) D = x2 + 5y2 - 2xy + 4y + 3 

D = ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

D = ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

=> MinD = 2 <=> x = y = -1/2

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)a) thu gọn f(x)b) Chứng tỏ f(x) k có nghiệmBài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa...
Đọc tiếp

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

 

0
11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!