Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lê thị hương giang e ko nghĩ câu F đề sai đâu ạ! Chị check giúp xem em có tính sai hay ko nha!
2/ Ta có:
\(F=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+8x+16-20\)
\(=\left(x-y+2\right)^2+\left(x+4\right)^2-20\ge-20\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
\(A=-x^2+2x+3=-\left(x^2-2x-3\right)\)
\(=-\left(x^2-2x+1-4\right)\)
\(=-\left[\left(x-1\right)^2-4\right]=-\left(x-1\right)^2+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=-2x^2-4x=-2\left(x^2+2x\right)\)
\(=-2\left(x^2+2x+1-1\right)\)
\(=-2\left[\left(x+1\right)^2-1\right]=-\left(x+1\right)^2+2\le2\)
Vậy \(B_{max}=2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(C=-x^2-6x+12=-\left(x^2+6x-12\right)\)
\(=-\left(x^2+6x+9-21\right)\)
\(=-\left[\left(x+3\right)^2-21\right]=-\left(x+3\right)^2+21\le21\)
Vậy \(C_{max}=21\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(D=-x^2+3x-1==-\left(x^2-3x+1\right)\)
\(=-\left(x^2-3x+\frac{9}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy \(D_{max}=\frac{5}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
Bài làm
a) 4x2 - 6x
= 2x( 2x - 3 )
b) 9x4y3 + 3x2y4
= 3x2y3( 3x2 + y )
c) x3 - 2x2 + 5x
= x( x2 - 2x + 5 )
d) 3x( x - 1 ) + 5( x - 1 )
= ( x - 1 )( 3x + 5 )
e) 2x2( x + 1 ) + 4( x + 1 )
= ( x + 1 )( 2x2 + 4 )
= ( x + 1 )2( x2 + 2 )
= 2( x + 1 )( x2 + 2 )
f) -3x - 6xy + 9xz
= -( 3x + 6xy - 9xz )
= -3x( 1 + 2y - 3z )
# Học tốt #
Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Ta có: C(x) =\(x^2-9x+20=x^2-4x-5x+20=\left(x-4\right)\left(x-5\right)\)
Vậy nghiệm của C(x) là x\(\in\left\{4;5\right\}\)
Ta có: D(x)\(=4x^2+4x+1=\left(2x+1\right)^2\)
Vậy D(x) có nghiệm x=-1/2
Ta có: E(x)=\(2\left(x-1\right)-5\left(x-2\right)=2x-2-5x +10\)= \(8-3x\)
Vậy E(x) có nghiệm x=8/3
Ta có: F(x)=\(2x^2-5x+2=\left(2x^2-x\right)-\left(4x-2\right)\)= \(\left(x-2\right)\left(2x-1\right)\)
Vậy F(x) có nghiệm là x\(\in\left\{\frac{1}{2};2\right\}\)
\(C\left(x\right)=x^2-9x+20\)
\(C\left(x\right)=x^2-4x-5x+20\)
\(C\left(x\right)=\left(x-4\right)\left(x-5\right)\)
=> nghiệm của phương trình là x = 4 hoặc x = 5
\(D\left(x\right)=4x^2+4x+1\)
\(D\left(x\right)=\left(2x+1\right)^2\)
=> nghiệm của phương trình là x = -1/2
\(E\left(x\right)=2\left(x-1\right)-5\left(x-2\right)\)
\(E\left(x\right)=2x-2-5x+10\)
\(E\left(x\right)=-3x-7\)
=> nghiệm của phương trình là x = -7/3
\(F\left(x\right)=2x^2-5x+2\)
\(F\left(x\right)=2x^2-4x-x+2\)
\(F\left(x\right)=\left(x-2\right)\left(2x-1\right)\)
=> nghiệm của phương trình là x = 2 hoặc x = 1/2