Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do abc=1 nên đặt a=x/y;b=y/z;c=z/x
\(P=\sum\sqrt[4]{\dfrac{a+b}{c+1}}=\sum\sqrt[4]{\dfrac{\dfrac{x}{y}+\dfrac{y}{z}}{\dfrac{z}{x}+1}}=\sum\sqrt[4]{\dfrac{x\left(xz+y^2\right)}{yz\left(x+z\right)}}\)
ta có\(\dfrac{x\left(x+z\right)\left(xz+y^2\right)}{yz\left(x+z\right)^2}=\dfrac{x\left(x\left(z^2+y^2\right)+z\left(x^2+y^2\right)\right)}{yz\left(x+z\right)^2}\)
\(\ge\dfrac{x\sqrt{xz}\left(x+y\right)\left(z+y\right)}{yz\left(x+z\right)^2}\)(cô si 2 số)
P>=\(\sum\sqrt[4]{\dfrac{x\sqrt{xz}\left(x+y\right)\left(z+y\right)}{\left(x+z\right)^2yz}}\)>=3(cô si 3 số)
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
bài này dễ thôi bạn, quan trọng là nó hơi dài nên mình không có hứng làm chi tiết
BĐT đã cho viết lại thành
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)^2+72abc\left(ab+bc+ca\right)-\left(a+b+c\right)^5\le0\)
\(\Leftrightarrow-\dfrac{3}{2}\left(8a^3+7a^2b+7a^2c-7ab^2-7ac^2+9b^2c+9bc^2\right)\left(b-c\right)^2-\dfrac{3}{2}\left(8b^3+7b^2c-7bc^2+9ac^2+7ab^2+9a^2c-7a^2b\right)\left(c-a\right)^2-\dfrac{3}{2}\left(9a^2b+9ab^2+7ac^2-7a^2c-7b^2c+7bc^2+8c^3\right)\left(a-b\right)^2\le0\)
Từ \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a+b+c\ge\dfrac{3\left(ab+bc+ca\right)}{a+b+c}\). Tức cần chứng minh
\(\dfrac{a^3}{b^2-bc+c^2}+\dfrac{b^3}{c^2-ac+a^2}+\dfrac{c^3}{a^2-ab+b^2}\ge a+b+c\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a^4}{ab^2-abc+ac^2}+\dfrac{b^4}{bc^2-abc+a^2b}+\dfrac{c^4}{a^2c-abc+b^2c}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+a^2b+b^2c+bc^2+c^2a+ca^2-3abc}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)\left(a^2b+a^2b+b^2c+bc^2+c^2a+ca^2-3abc\right)\)
\(\Leftrightarrow a^4+b^4+c^4+abc\left(a+b+c\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)
Đúng theo Schur bậc 4
bài này chỉ ở dạng trung trung thôi, có 2 cái link 1 tổng quát 2 hiệu quát ko biết giúp j dc ko
-tổng quát: Học tại nhà - Toán - Toán hay hay
-hiệu quát: Học tại nhà - Toán - (Bài Toán Thách Thức )
BĐT dạng k hay n là t ngu lắm ko giúp dc :v
Từ \(a^2+b^2+c^2=3\Rightarrow a+b+c\le3\)
Ta có: \(\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\)
\(\ge\sqrt{9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)
\(\ge\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)
Cần chứng minh \(\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\ge\dfrac{3\sqrt{13}}{2}\)
\(\Leftrightarrow9\left(\dfrac{9}{2t}\right)^2+t^2\ge\dfrac{117}{4}\left(t=a+b+c\le3\right)\)
\(\Leftrightarrow\dfrac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)*Đúng*
B1:a)ĐK: \(x\ne 0;4;9\)
b)\(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1+1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x-9-x+4+x^{\dfrac{1}{2}}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x^{\dfrac{1}{2}}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)
\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)\(=\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}\)
c)Vì \(x^{\dfrac{1}{2}}+1>0\forall x\) nên
\(P< 0< =>x-2x^{\dfrac{1}{2}}< 0\)
\(\Leftrightarrow x^{\dfrac{1}{2}}\left(x^{\dfrac{1}{2}}-2\right)< 0\)
\(\Leftrightarrow0< x< 4\)
Vậy 0<x<4 thì P<0
d)tA CÓ: \(\dfrac{1}{P}=\dfrac{x-2x^{\dfrac{1}{2}}}{x^{\dfrac{1}{2}}+1}=\dfrac{x-2x^{\dfrac{1}{2}}+1-1}{x^{\dfrac{1}{2}}+1}=\dfrac{\left(x^{\dfrac{1}{2}}-1\right)^2-1}{x^{\dfrac{1}{2}}+1}\ge-1\)
"=" khi x=1
B2:
a)\(A=x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)-5\)
\(=\left(x-y\right)^2-1+4\left(x-y\right)-4\)
\(=\left(x-y+1\right)\left(x-y-1\right)+4\left(x-y-1\right)\)
\(=\left(x-y+5\right)\left(x-y-1\right)\)
b)\(P=x^4+2x^3+3x^2+2x+1\)
\(=\left(x^4+2x^3+x^2\right)+2\left(x^2+x\right)+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\ge0\forall x\)
Vậy MinP=0
c)\(Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)
\(=\left(x^2+x-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)
\(=\left(1-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)
\(=0\left(x^4+x^3+2x^2+x+3\right)+4=4\)
Vậy x^2+x=1 thì Q=4
B3:a)\(2xy+x+y=83\)
\(\Leftrightarrow x\left(2y+1\right)+\dfrac{1}{2}\left(2y+1\right)=\dfrac{167}{2}\)
\(\Leftrightarrow2x\left(2y+1\right)+1\left(2y+1\right)=167\)
\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167\)
Mà \(Ư\left(167\right)=\left\{\pm1;\pm167\right\}\)
\(\Leftrightarrow\left(x;y\right)=\left(-84;-1\right);\left(-1;-84\right);\left(0;83\right);\left(83;0\right)\)
Vậy...
b)\(y^2+2xy-3x-2=0\)
\(\Leftrightarrow x^2+y^2+2xy-x^2-3x-2=0\)
\(\Leftrightarrow\left(x+y\right)^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vì \(x;y\in Z\) nên VT là số chính phương VP là tích 2 số nguyên liên tiếp
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
Vậy...
B5:\(B=\dfrac{x^2+x+1}{x^2-x+1}\)
\(\Leftrightarrow x^2\left(B-1\right)+x\left(-B-1\right)+\left(B-1\right)=0\)
\(\Delta=\left(-B-1\right)^2-4\left(B-1\right)\left(B-1\right)\)
\(=-\left(B-3\right)\left(3B-1\right)\)
pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(B-3\right)\left(3B-1\right)\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}B-3\le0\\3B-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}B\le3\\B\ge\dfrac{1}{3}\end{matrix}\right.\)
Min B=1/3 khi x=-1; Max B=3 khi x=1
#Đêm qua tự nhiên mơ thấy cách này, dậy làm luôn :v
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(x^2+y^2+1\right)\left(1+1+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{1}{x^2+y^2+1}\le\dfrac{2+z^2}{\left(x+y+z\right)^2}.\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{y^2+z^2+1}\le\dfrac{2+x^2}{\left(x+y+z\right)^2};\dfrac{1}{x^2+z^2+1}\le\dfrac{2+y^2}{\left(x+y+z\right)^2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{x^2+y^2+z^2+6}{\left(x+y+z\right)^2}=\dfrac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{\left(x+y+z\right)}=1\)
Khi \(x=y=z=1\)
bạn ơi, bạn đánh sai kìa, lớn hơn 0 chứ