Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
a) Sai với \(a=1,b=2\)
b)
Thực hiện biến đổi tương đương:
\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$
c) BĐT sai với \(a=1,b=2\)
\(VT=\dfrac{a}{b\left(b^2+a\right)}+\dfrac{b}{c\left(c^2+b\right)}+\dfrac{c}{a\left(a^2+c\right)}\)
\(VT=\dfrac{a+b^2-b^2}{b\left(b^2+a\right)}+\dfrac{b+c^2-c^2}{c\left(c^2+b\right)}+\dfrac{c+a^2-a^2}{a\left(a^2+c\right)}\)
\(VT=\dfrac{1}{b}-\dfrac{b}{b^2+a}+\dfrac{1}{c}-\dfrac{c}{c^2+b}+\dfrac{1}{a}-\dfrac{a}{a^2+c}\)
\(VT=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\left(\dfrac{b}{b^2+a}+\dfrac{c}{c^2+b}+\dfrac{a}{a^2+c}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{b}{b^2+a}\le\dfrac{b}{2b\sqrt{a}}=\dfrac{1}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại tao có
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\sqrt{\dfrac{1}{a}}\le\dfrac{\dfrac{1}{a}+1}{2}\)
Tương tự ta có
\(\sqrt{\dfrac{1}{b}}\le\dfrac{\dfrac{1}{b}+1}{2};\sqrt{\dfrac{1}{c}}\le\dfrac{\dfrac{1}{c}+1}{2}\)
Thu lại ta có
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3}{2}\right)\)
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=1\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
a/ Từ BĐT ban đầu ta có:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)
b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)
c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:
\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
Mặt khác ta cũng có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và AM - GM có:
\(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}=\dfrac{a^6}{abc}+\dfrac{b^6}{abc}+\dfrac{c^6}{abc}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Dấu " = " khi a = b = c = 1
Vậy...
Lời giải khác:
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} \frac{a^5}{bc}+abc\geq 2\sqrt{a^6}=2a^3\\ \frac{b^5}{ac}+abc\geq 2\sqrt{b^6}=2b^3\\ \frac{c^5}{ab}+abc\geq 2\sqrt{c^6}=2c^3\end{matrix}\right.\Rightarrow \frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq 2(a^3+b^3+c^3)-3abc\)
Mặt khác, cũng theo BĐT AM-GM:
\(a^3+b^3+c^3\geq 3abc\Rightarrow 2(a^3+b^3+c^3)-3abc\geq a^3+b^3+c^3\)
Kéo theo \(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq a^3+b^3+c^3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
2) Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó, ta có: \(a^2+bc\le a^2+ac\le\left(a+c\right)^2\)
Vậy chỉ cần chứng minh
\(\left(a+b\right)^2\left(b+c\right)^2\ge4\left(b^2+ca\right)\left(c^2+ab\right)\)
Lợi dụng AM-GM ngay, ta được
\(4\left(b^2+ca\right)\left(c^2+ab\right)\le\left(b^2+ca+c^2+ab\right)^2=\left(b^2+ab+bc+ca+c^2-bc\right)^2=\left[\left(b+a\right)\left(b+c\right)+c\left(c-b\right)^2\right]\le\left(b+a\right)^2\left(b+c\right)^2\)
Đẳng thức xảy ra khi a=b;c=0 và hoán vị
3) \(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Lợi dụng AM-GM, ta được
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự với các BĐT tiếp theo
Cộng vế theo vế rồi rút gọn ta được đpcm
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)
Từ \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a+b+c\ge\dfrac{3\left(ab+bc+ca\right)}{a+b+c}\). Tức cần chứng minh
\(\dfrac{a^3}{b^2-bc+c^2}+\dfrac{b^3}{c^2-ac+a^2}+\dfrac{c^3}{a^2-ab+b^2}\ge a+b+c\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a^4}{ab^2-abc+ac^2}+\dfrac{b^4}{bc^2-abc+a^2b}+\dfrac{c^4}{a^2c-abc+b^2c}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+a^2b+b^2c+bc^2+c^2a+ca^2-3abc}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)\left(a^2b+a^2b+b^2c+bc^2+c^2a+ca^2-3abc\right)\)
\(\Leftrightarrow a^4+b^4+c^4+abc\left(a+b+c\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)
Đúng theo Schur bậc 4
Schur bậc 3 ---> not okay
Schur bậc 4 ---> Okay