K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

a2+b2+c2=1a2+b2+c2=1

|a|;|b|;|c|≤1|a|;|b|;|c|≤1

−1≤a;b;c≤1−1≤a;b;c≤1

(a+1)(b+1)(c+1)≥0(a+1)(b+1)(c+1)≥0

ab+bc+ac+a+b+c+1+abc≥0(1)ab+bc+ac+a+b+c+1+abc≥0(1)

Mặt khác ta có :

(1+a+b+c)2≥0(1+a+b+c)2≥0

a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0

2(a+b+c+ab+bc+ac+1)≥02(a+b+c+ab+bc+ac+1)≥0

(a+b+c+ab+bc+ac+1)≥0(2)(a+b+c+ab+bc+ac+1)≥0(2)

 

9 tháng 2 2016

trong nâng cao và phát triển có bài này thật đấy

 

1 tháng 12 2017

Chỗ giả thiết vế phải có đúng ko vậy

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
9 tháng 5 2016

eoeo

 

9 tháng 5 2016

bai nay mk lm dc ...........nhug hoi dai