K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

a2+b2+c2=1a2+b2+c2=1

|a|;|b|;|c|≤1|a|;|b|;|c|≤1

−1≤a;b;c≤1−1≤a;b;c≤1

(a+1)(b+1)(c+1)≥0(a+1)(b+1)(c+1)≥0

ab+bc+ac+a+b+c+1+abc≥0(1)ab+bc+ac+a+b+c+1+abc≥0(1)

Mặt khác ta có :

(1+a+b+c)2≥0(1+a+b+c)2≥0

a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0

2(a+b+c+ab+bc+ac+1)≥02(a+b+c+ab+bc+ac+1)≥0

(a+b+c+ab+bc+ac+1)≥0(2)(a+b+c+ab+bc+ac+1)≥0(2)

 

9 tháng 2 2016

trong nâng cao và phát triển có bài này thật đấy

 

14 tháng 3 2016

thay ab+bc+ac=1 vào 1+a^2=ab+bc+ca+a^2=b*(a+c)+a*( a+c)=(a+b)*(a+c)

tương tự 1+b^2=(a+b)*(b+c);1+c^2=(a+c)*(b+c)

mẫu số của A=(a+b)^2*(b+c)^2*(c+a)^2=Tử số của A

=> A=1

8 tháng 3 2019

Ta có : \(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\)

\(\Rightarrow-1\le a;b;c\le1\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)

\(\Rightarrow a+b+c+ab+ac+bc+abc+1\ge0\left(1\right)\)

Lại có : \(\left(a+b+c+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac+a+b+c\right)+1\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac+a+b+c+1\right)\ge0\)

\(\Leftrightarrow ab+bc+ac+a+b+c+1\ge0\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow abc+2\left(ab+bc+ac+a+b+c+1\right)\ge0\left(đpcm\right)\)

9 tháng 11 2015

abc = 1 => a3b3c3=1

<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)

Áp dụng BĐT cauchy cho 3 số dương ta có : 

\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)

Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)

\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)

\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)

Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)

Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D

5 tháng 11 2018

Bài 1

a, Ta có

A = x2 + 6x + 13

⇒ A = (x2 + 6x + 9) + 4

⇒ A = (x + 3)2 + 4

Vì (x + 3)2 ≥ 0 với ∀ x ∈ R

⇒ (x + 3)2 + 4 ≥ 4 > 0 với ∀ x ∈ R

⇒ A > 0 với ∀ x ∈ R (đpcm)

b, B = 2x2 + 4y2 - 4x + 4xy + 13

⇒ B = (2x2 - 4x + 2) + (4y2 + 4xy + 1) + 8

⇒ B = 2 (x2 - 2x + 1) + (2y + 1)2 + 8

⇒ B = 2 (x - 1)2 + (2y + 1)2 + 8

\(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)

⇒ 2 (x - 1)2 + (2y + 1)2 ≥ 0 với ∀ x, y ∈ R

⇒ 2 (x - 1)2 + (2y + 1)2 + 8 ≥ 8 với ∀ x, y ∈ R

⇒ B ≥ 8 với ∀ x, y ∈ R

Dấu " = " xảy ra

⇒ 2 (x - 1)2 + (2y + 1)2 = 0

\(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)

nên : Để 2 (x - 1)2 + (2y + 1)2 = 0

\(\left\{{}\begin{matrix}2\left(x-1\right)^2=0\text{ }\\\left(2y+1\right)^2=0\text{ }\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0+1\\2y=0-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\2y=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của B là 8 tại \(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)

Chúc bạn học tốt!!!

5 tháng 11 2018

cảm ơn bn nhiều nha

1 tháng 12 2017

Chỗ giả thiết vế phải có đúng ko vậy