K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

các bạn ơi làm hộ mình với

NV
30 tháng 6 2021

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}\)

\(=1-\dfrac{\left(ab-1\right)\left(ab+1\right)}{\left(ab+1\right)^2}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{ab+1}\) (đpcm)

Dấu "=" xảy ra khi \(a=b\)

30 tháng 6 2021

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)

\(\Rightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)

\(\Rightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Rightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Rightarrow\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Rightarrow\dfrac{\left(b-a\right)\left(a+ab^2\right)-\left(b-a\right)\left(b+a^2b\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Rightarrow\dfrac{\left(b-a\right)\left(-\left(b-a\right)+ab\left(b-a\right)\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Rightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng vì \(ab\ge1\))

 

 

NV
1 tháng 3 2022

\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Mặt khác:

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

3 tháng 8 2021

Ta có: \(P=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

sử dụng bđt cô-si có: \(a^2+\frac{1}{16a^2}\ge\frac{1}{2};b^2+\frac{1}{16b^2}\ge\frac{1}{2};\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}=\frac{4}{2ab}\)

Lại có: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}\)

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)\ge4\frac{4}{a^2+b^2+2ab}=\frac{16}{\left(a+b\right)^2}=16\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge8\)

\(\Rightarrow P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}=\frac{17}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

15 tháng 5 2016

Toán lớp 9

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Bài 1:

Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)

Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)

Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)

Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)

\(\Rightarrow 1-a^{1-a}\geq 0\)

\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)

\(\Rightarrow a^a\geq a\)

Tương tự: \(b^b\geq b\)

\(\Rightarrow a^ab^b\geq ab\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Bài 2:

Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)

\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)

\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)

\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)

\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)

Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)

Tức là \(a-b; 3^a-3^b\) luôn cùng dấu

\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)

\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)

Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)

Do đó $(*)$ đúng, ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

$P=a^3b^3+1+1+\frac{1}{a^3b^3}$

$=(ab)^3+\frac{1}{(ab)^3}+2$

Áp dụng BĐT Cô-si:

$(ab)^3+\frac{1}{4096(ab)^3}\geq 2\sqrt{(ab)^3.\frac{1}{4096(ab)^3}}=\frac{1}{32}(1)$

$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$

$\Rightarrow (ab)^3\leq \frac{1}{64}$

$\Rightarrow \frac{4095}{4096(ab)^3}\geq \frac{4095}{64}(2)$

Từ $(1);(2)$ suy ra:
$P\geq \frac{1}{32}+\frac{4095}{64}+2=\frac{4225}{64}$
Vậy $P_{\min}=\frac{4225}{64}$

Giá trị này đạt tại $a=b=\frac{1}{2}$

 

AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(2a+b+c=(a+b)+(a+c)\geq 2\sqrt{(a+b)(a+c)}\)

\(\Rightarrow (2a+b+c)^2\geq 4(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(2a+b+c)^2}\leq \frac{1}{4(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(P\leq \frac{1}{4}\left(\frac{1}{(a+b)(a+c)}+\frac{1}{(b+c)(b+a)}+\frac{1}{(c+a)(c+b)}\right)\)

\(\Leftrightarrow P\leq \frac{1}{4}.\frac{(b+c)+(c+a)+(a+b)}{(a+b)(b+c)(c+a)}\)

\(\Leftrightarrow P\leq \frac{a+b+c}{2(a+b)(b+c)(c+a)}\)

Lại có: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\) (theo AM-GM)

\(\Rightarrow P\leq \frac{a+b+c}{2.8abc}=\frac{a+b+c}{16abc}(1)\)

Tiếp tục áp dụng BĐT AM-GM:

\(\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}; \frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}; \frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}\)

\(\Rightarrow 2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow 3\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

\(\Rightarrow a+b+c\leq 3abc(2)\)

Từ \((1); (2)\Rightarrow P\leq \frac{3abc}{16abc}=\frac{3}{16}\)

Vậy \(P_{\max}=\frac{3}{16}\). Dấu bằng xảy ra khi \(a=b=c=1\)