K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

khó quá mọi người ơi

15 tháng 12 2017

Em tham khảo tại đây nhé:

Câu hỏi của Trang Đoàn - Toán lớp 8 - Học toán với OnlineMath

A =n^4 + 4 ^n >5 khi n>1

n^4 thì sẽ có tận cùng là 1 nếu n lẻ và có tận cùng là 6 nếu n chẵn ( n chẵn thì A là hợp số )và 

4^n thì sẽ có tận cùng là 4 khi n lẻ và 6 khi n chẵn

Nếu n chẵn thì A là hợp số

Nếu n lẻ thì A có tận cùng là 5 => A chia hết cho 5 và A >5 nên A là hợp số 

Vậy A là hợp số (n>1)

10 tháng 8 2017

n^4 + 4=n^4+4n^2+4-4n^2

= (n^2+2)^2-4n^2

=(n^2+2-2n)(n^2+2+2n)

=((n-1)^2+1)(n^2+2+2n)

chung minh cac thua so >1 la se suy ra n^4+4 la hop so

11 tháng 12 2016

Có: \(8\left(a^2+b^2\right)=\left(2a+2b\right)^2\)

\(\Leftrightarrow8a^2+8b^2=4a^2+8ab+4b^2\)

\(\Leftrightarrow4a^2-8ab+4b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)

=> đpcm

11 tháng 12 2016

8(a2+b2) = (2a + 2b)2

=>8a2+8b2= 4a2 + 8ab + 4b

=> 4a2 + 4b2 = 8ab

=> 4a2 + 4b2 - 8ab = 0

=> (2a - 2b)2 =0

=> 2a - 2b = 0

=> 2(a-b)=0

=>a-b=0

=> a=b

 

16 tháng 10 2020

Từ a3 + b3 + c3 = 3abc

<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> tam giác đó là tam giác đều

b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

CM đúng (tự cm tđ)

Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)

Dấu "=" xảy ra <=> x = y = z = 1/3

16 tháng 10 2020

a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0

Ta có : a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0 

Xét TH còn lại ta có :

a2 + b2 + c2 - ab - ac - bc = 0

<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

=> Tam giác đó là tam giác đều ( đpcm )

1 tháng 12 2017

Chỗ giả thiết vế phải có đúng ko vậy