K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

\((a^2+b^2)^3=(a^3+b^3)^2\)

\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=a^6+2a^3b^3+b^6\)

\(\Rightarrow 3a^2b^2(a^2+b^2)=2a^3b^3\)

\(\Rightarrow 3(a^2+b^2)=2ab\) (chia cả 2 vế cho \(a^2b^2\neq 0\) )

\(\Rightarrow 2(a^2+b^2)=-(a^2+b^2)+2ab=-(a-b)^2(*)\)

Với mọi \(a,b\neq 0\) thì \(2(a^2+b^2)>0; -(a-b)^2\leq 0\), do đó $(*)$ vô lý

Vậy không tồn tại $a,b$ thỏa mãn đkđb, kéo theo không tìm được giá trị của $A$

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

31 tháng 3 2018

a.

Xét hiệu:

\(a^3+b^3-ab\left(a+b\right)=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)

\(=a^2-ab+b^2-ab=a^2-2ab+b^2\)

\(=\left(a-b\right)^2\ge0\)

=> BĐT luôn đúng

b.

Xét hiệu:

\(a^4+b^4-a^3b-ab^3=\left(a^4-a^3b\right)-\left(b^4-ab^3\right)\)

\(=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a^3-b^3\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a-b\right)\)

\(=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

=> BĐT luôn đúng

31 tháng 3 2018

a)

\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Rightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrowđpcm\)

b)

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4-ab^3+b^4-a^3b\ge0\)

\(\Leftrightarrow a\left(a^3-b^3\right)-b\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrowđpcm\)

c)

\(\left(a+1\right)\left(b+1\right)\ge\left(\sqrt{ab}+1\right)^2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)-\left(\sqrt{ab}+1\right)^2\ge0\)

\(\Leftrightarrow1+b+a+ab-ab-2\sqrt{ab}-1\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Dấu bằng xảy ra khi \(a=b\)

d)

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)

Áp dụng bất đẳng thức AM-GM ta được

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}\)

\(\Leftrightarrow\dfrac{a^3}{b}+ab\ge2a^2\)

Tương tự ta được

\(\dfrac{b^3}{c}+bc\ge2b^2,\dfrac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)

Mặt khác ta có:\(a^2+b^2+c^2\ge ab+bc+ac\) (hệ quả bất đẳng thức AM-GM)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)

Dấu bằng xảy ra khi \(x=y=z;x,y,z>0\)

9 tháng 4 2017

đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi

9 tháng 4 2017

mk sẽ rút kinh nghiệm cám ơn

9 tháng 11 2018

\(ab=x;bc=y;ac=z\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

Tự full nhé?

21 tháng 8 2017

\(e,\)

\(\left(\dfrac{1}{3}a^3b+\dfrac{1}{3}a^2b^2-\dfrac{1}{4}ab^3\right):5ab\)

\(=\dfrac{1}{15}a^2+\dfrac{1}{15}ab-\dfrac{1}{20}b^2\)

\(f,\)

\(\left(-\dfrac{2}{3}x^5y^2+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):6x^2y^2\)

\(=-\dfrac{1}{9}x^3+\dfrac{1}{8}x^2y-\dfrac{2}{15}xy^2\)

\(g,\)

\(\left(\dfrac{3}{4}a^6b^3+\dfrac{6}{5}a^3b^4-\dfrac{5}{10}ab^5\right):\left(\dfrac{3}{5}ab^3\right)\)

\(=\dfrac{5}{4}a^5+2a^2b-\dfrac{5}{6}b^2\)

21 tháng 8 2017

cam on

5 tháng 7 2017

1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)

\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(=1\)

Vậy A = 1

Bài 2: ( đặt đề bài là A )

Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)

\(\Rightarrow a+b+c=x+y+z\)

\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(=3.2c.2a.2b=24abc\)

Vậy...

Bài 3:

+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )

+) Xét \(p\ne3\) thì:

+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)

+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)

Vậy p = 3

Bài 4:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

\(\Rightarrowđpcm\)

28 tháng 11 2022

Bài 1:

a^2-5ab-6b^2=0

=>a^2-6ab+ab-6b^2=0

=>a*(a-6b)+b(a-6b)=0

=>(a-6b)(a+b)=0

=>a=-b hoặc a=6b

TH1: a=-b

\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)

TH2: a=6b

\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)

7 tháng 8 2017

Đặt \(ab=x;bc=y;ca=z\) thì có \(x^3+y^3+z^3=3xyz\) dễ nhé