Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Do \(a^2\ge0;b^2\ge0;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )
Thay * vào biểu thức M , ta được :
\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)
\(=-1^{1999}+0+1^{2001}\)
\(=-1+0+1\)
\(=0\)
Vậy \(M=0\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)
\(\Leftrightarrow bc+ac+ab-1=0\)
\(\Leftrightarrow bc+ac+ab=1\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)
\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)
\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Mà \(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)
\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)
\(\Rightarrow P=1+1+1=3\)
Vậy \(P=3\)
Đặt \(ab=x;bc=y;ca=z\) thì có \(x^3+y^3+z^3=3xyz\) dễ nhé
Ta có : \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3ab.bc.ac\)
Đặt \(ab=x;bc=y;ac=z\) . Khi đó , ta có :
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x^3+y^3+3x^2y+3y^2x\right)+z^3-3x^2y-3y^2x-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-xz=0\end{matrix}\right.\)
Với \(x+y+z=0\Rightarrow ab+ac+bc=0\)
Với \(x^2+y^2+z^2-xy-yz-xz=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Lí luận tổng này \(\ge0\) ( làm tắt )
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
\(\Rightarrow ab=ac=bc\)
....
Đến bước này chịu , bạn xem đề có sai không ?
1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)
\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=1\)
Vậy A = 1
Bài 2: ( đặt đề bài là A )
Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)
\(\Rightarrow a+b+c=x+y+z\)
\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(=3.2c.2a.2b=24abc\)
Vậy...
Bài 3:
+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )
+) Xét \(p\ne3\) thì:
+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)
+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)
Vậy p = 3
Bài 4:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
\(\Rightarrowđpcm\)
Ta có:
(a+b+c)2=a2+b2+c2
a2+b2+c2+2ab+2ac+2bc=a2+b2+c2
2(ab+bc+ca)=0
ab+bc+ca=0
Ta có:
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
\(\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\dfrac{3}{abc}\)
\(\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\left(ab+bc\right)^3-3ab^2c\left(ab+bc\right)+a^3c^3-3a^2b^2c^2=0\)
\(\left(ab+bc+ca\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ca\right)-3ab^2c\left(-ac\right)-3a^2b^2c^2=0\)
\(0+3a^2b^2c^2-3a^2b^2c^2+0=0\)
0=0(luôn đúng)
Vậy BĐT được chứng minh
Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-a^2-b^2-c^2=0\)
\(\Rightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Chia cả 2 vế cho \(a^3b^3c^3\) , ta có :
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\left(đpcm\right)\)
1) \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)\)
\(\left(do\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]=-\left(c^3-a^3\right)\right)\)
\(=\left(a-b\right)\left(b^3-c^3\right)+\left(c-b\right)\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(b^2+bc+c^2\right)-\left(a^2+ab+b^2\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
2) \(\dfrac{a-b}{b+c}+\dfrac{b-a}{c+a}+\dfrac{c-b}{a+b}=1\)
\(\Rightarrow\dfrac{a-c}{b+c}+1+\dfrac{b-a}{c+a}+1+\dfrac{c-b}{a+b}+1=4\)
\(\Rightarrow\dfrac{a-c+b+c}{b+c}+\dfrac{b-a+c+a}{c+a}+\dfrac{c-b+a+b}{a+b}=4\)
\(\Rightarrow\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}=4\)
Câu 1:
Theo bài ra ta có:
\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)
\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)
\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)
\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)
\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
\(\Rightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)
=> a^20 + b^20 = 2
:)) đừng ném đá nhá
Lời giải:
\((a+b+c)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Rightarrow ab+bc=-ac\). Từ đây suy ra:
\(M=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{(ab)^3+(bc)^3+(ca)^3}{(abc)^3}\)
\(=\frac{(ab)^3+(bc)^3+3(ab)^2(bc)+3(ab)(bc)^2-3(ab)^2(bc)-3(ab)(bc)^2+(ca)^3}{(abc)^3}\)
\(=\frac{(ab+bc)^3-3ab^2c(ab+bc)+(ca)^3}{(abc)^3}\)
\(=\frac{(-ca)^3-3ab^2c(-ca)+(ca)^3}{(abc)^3}\)
\(=\frac{3a^2b^2c^2}{(abc)^3}=\frac{3}{abc}\)
\(ab=x;bc=y;ac=z\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)
Tự full nhé?