K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

từ \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\)

\(\Rightarrow\)\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

vì a,b,c khác 0 và các mẫu đều khác 0 nên a = b = c

\(\Rightarrow\frac{a+b}{2c}+\frac{b+c}{3a}+\frac{c+a}{4b}=1+\frac{2}{3}+\frac{1}{2}=\frac{13}{6}\)

29 tháng 12 2018

Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k

=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k

Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z

30 tháng 12 2018

Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k

=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k

Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z

12 tháng 11 2019

Từ đẳng thức \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

\(\Rightarrow\frac{a}{b+c}+1=\frac{b}{c+a}+1=\frac{c}{a+b}+1\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{c+a}=\frac{a+b+c}{a+b}\)

Nếu a + b + c = 0

=> a + b = - c;

b + c = - a;

c + a = - b

Khi đó M = \(\frac{-c}{2c}+\frac{-a}{a}+-\frac{b}{4b}=-\frac{1}{2}+\left(-1\right)+\left(-\frac{1}{4}\right)=-\frac{7}{4}=-1,75\)

Nếu a + b + c \(\ne\)0

=> b + c = c + a = a + b

=> a = b = c

Khi đó M = \(\frac{2c}{2c}+\frac{2a}{a}+\frac{2b}{4b}=1+2+\frac{1}{2}=\frac{7}{2}=3,5\)

Vậy nếu a + b + c = 0 thì M = -1,75

nếu a + b + c \(\ne\)0 thì M = 3,5

9 tháng 10 2019

2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3

->a+b+2c = 4c -> a+b=2c

Tương tự -> b+c = 2a và a+c=2b

Thay vào M tính được M  = 8abc/abc = 8

9 tháng 10 2019

Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4

14 tháng 2 2020

Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)

Vậy \(P=9\)

Trừ cả 3 đi 1 ta còn

\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

Vói a+b+c=1 thì P=-1

Với a+b+c khác 0 thì

\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)

\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)

Vậy............

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)