K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k

=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k

Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z

30 tháng 12 2018

Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k

=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k

Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z

27 tháng 11 2019

Bạn xem lời giải  Tại đây  nhé !

11 tháng 3 2017

Đặt \(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\)=k

=>x=ak+2bk+ck; y=2ak+bk-ck; z=4ak-4bk+ck

=> \(\frac{a}{x+2y+c}\)=\(\frac{a}{ak+2bk+ck+4bk+2bk-2ck+4ak-4bk+ck}\)=\(\frac{a}{9ak}\)=\(\frac{1}{9k}\)

Tương tự => \(\frac{a}{x+2y+c}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)=\(\frac{1}{9k}\)

25 tháng 2 2018

link này : Câu hỏi của haru - Toán lớp 7 - Học toán với OnlineMath

9 tháng 12 2018

\(\frac{x}{a-2b+c}=\frac{y}{2a-b-c}=\frac{z}{4a+4b+c}\)

\(=\frac{2y}{4a-2b-2c}=\frac{2x}{2a-4b+2c}=\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{a-2b+c}=\frac{2y}{4a-2b-2c}=\frac{z}{4a+4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)

\(\frac{z}{4a+4b+c}=\frac{y}{2a-b-c}=\frac{2x}{2a-4b+2c}=\frac{z-y-2x}{9b}\left(2\right)\)

\(\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}=\frac{z}{4a+4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)

Từ (1),(2),(3) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{z-y-2x}{9b}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{z-y-2x}=\frac{x}{4x-4y+z}\)(ĐPCM)

AH
Akai Haruma
Giáo viên
19 tháng 7 2024

Bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.