K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

quá đơn giản 

cho 5 k giải cho

(mình trong đội tuyển toán đó nhe nên làm theo đi)

16 tháng 7 2017

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)

        \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)

     \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)

Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

kinh quá

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...

8 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

23 tháng 3 2023

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

17 tháng 6 2021

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=> cd(a2 + b2) = ab(c2 + d2

=> a2cd + b2cd = abc2 + abd2

=>  a2cd + b2cd - abc2 - abd2 = 0

=>  (a2cd - abc2) + (b2cd - abd2) = 0

=> ac(ad - bc) + bd(bc - ad) = 0

=> ac(ad - bc) - bd(ad - bc) = 0

=> (ac - bd)(ad - bc) = 0

=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)

29 tháng 10 2018

áp dụng dãy tỉ số = nhau ta có

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c-d}\)

Ta xét

Vế 1  \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{ab}{cd}\)( nhân cả tử mẫu lại với nhau )

Vế 2 : \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\frac{a^2-b^2}{c^2-d^2}\) ( nhân cả tử cả  mẫu với nhau )

Mà Vế 1 = vế 2

=> \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)

29 tháng 10 2018

đợi tui tí dược ko