Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}\right)^5\right]^{100}=\left(-\frac{1}{32}\right)^{100}\)
=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{32}\right)^{100}\)
<=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{2}\right)^{500}\)
câu b cũng tương tự nha tất cả đưa về cơ số là -2
a) Chỉ cần so sánh \(\left(\frac{1}{16}\right)^{100}\)và \(\left(\frac{1}{2}\right)^{500}\)
Cách 1 : \(\left(\frac{1}{16}\right)^{100}\)= \(\left(\frac{1}{2}\right)^{400}>\left(\frac{1}{2}\right)^{500}\)
Cách 2 : \(\left(\frac{1}{16}\right)^{100}>\left(\frac{1}{32}\right)^{100}=\left(\frac{1}{2}\right)^{500}\)
b) Trước hết ta so sánh : 329 và 1813
Ta có : 329 < 245 < 252 = 1613 < 1813
Vậy -329 > -1813 tức là ( -32)9 > ( -18)13
a)(1/16)200=(12/162)100=(1/256)100
(1/2)1000=(110/210)100=(1/1024)100
vì 1/256>1/2014 nên (1/256)100>(1/1024)100
hay (1/16)200>(1/2)1000
trieu dang làm đúng rồi đó các bạn **** cho trieu dang đi
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{18}{19}.\frac{19}{20}\)
\(A=\frac{1}{20}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(\Leftrightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{18}{19}.\frac{19}{20}\)
\(\Leftrightarrow A=\frac{1}{20}>\frac{1}{21}\)
\(\Leftrightarrow A>\frac{1}{21}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)................\left(1-\frac{1}{100}\right)\)
\(\Leftrightarrow B=\frac{3}{4}.\frac{8}{9}..................\frac{99}{100}\)
\(B=\frac{1.3}{2^2}.\frac{2.4}{3^2}................\frac{9.11}{50^2}\)
\(B=\frac{11}{50}< \frac{11}{21}\)
\(a,2^{150}=\left(2^3\right)^{50}=8^{50}< 9^{50}=\left(3^2\right)^{50}=3^{100}\\ b,2^{24}=\left(2^3\right)^8=8^8< 9^8=\left(3^2\right)^8=3^{16}\)
\(A=\left(\frac{1}{16}\right)^{200}=\frac{1}{16^{200}}=\frac{1}{2^{4\cdot200}}=\frac{1}{2^{800}}< B=\frac{1}{2^{100}}\)