Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2
=>a^2d^2-2abcd+b^2c^2>=0
=>(ad-bc)^2>=0(luôn đúng)
Áp dụng bđt AM-GM:
\(a^2+4\ge2\sqrt{4a^2}=4a\)
\(b^2+4\ge2\sqrt{4b^2}=4b\)
\(c^2+4\ge2\sqrt{4c^2}=4c\)
\(d^2+4\ge2\sqrt{4d^2}=4d\)
Nhân theo vế suy ra đpcm.
Áp dụng BĐT Bunhiacopski với 2 bộ số( a,b,c,d)(1,1,1,1) ta có:
(a.1+b.1+c.1+d.1)2\(\le\)(1+1+1+1)(\(a^2+b^2+c^2+d^2)\)
<=>\(4(a^2+b^2+c^2+d^2)\ge2^2 \)
<=>\(a^2+b^2+c^2+d^2\ge1\)
Dấu bằn xảy ra<=> a=b=c=d=\(\frac{1}{2} \)
Bài 4:
Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:
\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)
Dấu " = " xảy ra khi a = b = c = 1
\(\Rightarrowđpcm\)
Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)
\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)
(đpcm)
Dấu "=" xảy ra khi $a=b=1$
Lời giải:
Theo BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)
\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)
Do đó:
\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)
\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)
Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.
Lời giải:
Ta có:
\(\text{VT}=a^2+b^2+c^2+(a+b+c)(a^2+b^2+c^2)-(a^3+b^3+c^3)\)
\(\Leftrightarrow \text{VT}=a^2+b^2+c^2+ab(a+b)+bc(b+c)+ac(c+a)\)
\(\Leftrightarrow \text{VT}=a^2+b^2+c^2+(a+b+c)(ab+bc+ac)-3abc\)
\(\Leftrightarrow \text{VT}=(a+b+c)^2+(ab+bc+ac)-3abc\)
Áp dụng BĐT AM-GM:
\(3(ab+bc+ac)=(a=b+c)(ab+bc+ac)\geq 9abc\Rightarrow ab+bc+ac\geq 3abc\)
Do đó \(\text{VT}\geq (a+b+c)^2=9\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+1)(c^2+4)=(a^2+1^2)(c^2+2^2)\geq (ac+2)^2\)
\((b^2+2)(d^2+8)=(b^2+\sqrt{2}^2)(d^2+\sqrt{8}^2)\geq (bd+\sqrt{2.8})^2=(bd+4)^2\)
Nhân theo vế 2 BĐT trên thu được đpcm
Dấu "=" xảy ra khi: \(\left\{\begin{matrix} \frac{a}{c}=\frac{1}{2}\\ \frac{b}{d}=\frac{\sqrt{2}}{\sqrt{8}}=\frac{1}{2}\end{matrix}\right.\)