K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\dfrac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}=\dfrac{3a+3b+3c+3d}{a+b+c+d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Vậy \(k=3\)

12 tháng 7 2017

Theo tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

=> k = 3

sửa: \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)

giải:

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}\\ =\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\\ =\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3=k\)

vậy k=3

2 tháng 3 2017

theo bài ra ta có:

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\)

\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1=k+1\) \(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=k+1\)

vì a + b + c + d khác 0 => a = b = c = d

ta có:

\(\Rightarrow\frac{4a}{a}=\frac{4b}{b}=\frac{4c}{c}=\frac{4d}{d}=k+1\)

=> 4 = 4 = 4 = 4 = k + 1

=> k + 1 = 4

=> k = 3

vật k = 3

14 tháng 4 2017

theo đầu bài

=>\(\dfrac{b+c+d}{a}\)=\(\dfrac{c+d+a}{b}\)=\(\dfrac{d+a+b}{c}\)=\(\dfrac{a+b+c}{d}\)=\(\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)=\(\dfrac{3\left[a+b+c+d\right]}{a+b+c+d}\)=>=3

=>k=3

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3

suy ra k=3

29 tháng 11 2017

taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)

=>k+1=4

=>k=3

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

11 tháng 6 2017

\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\left(1\right)\\ \dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\left(2\right)\\ \dfrac{c}{c+d+a}>\dfrac{c}{a+b+c+d}\left(3\right)\\ \dfrac{d}{d+a+b}>\dfrac{d}{a+b+c+d}\left(4\right)\)

Từ (1) (2) (3) (4) => \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a+b+c+d}{a+b+c+d}\\ \Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(4\right)\)

Mặt khác

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}=\left(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}\right)+\left(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}\right)\)

\(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}< \dfrac{a}{a+c}+\dfrac{c}{c+a}\) ; \(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}< \dfrac{b}{b+d}+\dfrac{d}{b+d}\)

=>\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{b}{b+d}\right)=2\)(5)

Từ (4) (5) => \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

Vậy B không phải là số nguyên

11 tháng 6 2017

1 < B < 2 => KL

10 tháng 10 2017

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu \(a+b+c+d\ne0\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=4\)

Nếu a + b + c + d = 0 => a + b = -(c + d) ; (b + c) = -(a + d) ; c + d = -(a+b) ; d + a = -(b + c)

\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy M = 4 hoặc M = -4