Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)
Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:
\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)
Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)
Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)
khi đó từ gt, ta có:
\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)
\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)
\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(=1-2xyz\ge\frac{3}{4}\)
từ các đánh giá trên => \(A\ge\frac{1}{4}\)
=> đpcm
Lời giải:
Sử dụng điều kiện \(xyz=1\):
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow \left(x-\frac{1}{x}\right)+(y+z)-\left(\frac{1}{y}+\frac{1}{z}\right)=0\)
\(\Leftrightarrow \frac{x^2-1}{x}+(y+z)-\frac{(y+z)}{yz}=0\)
\(\Leftrightarrow yz(x^2-1)+(y+z)-x(y+z)=0\)
\(\Leftrightarrow (x-1)(xyz+yz)-(y+z)(x-1)=0\)
\(\Leftrightarrow (x-1)(1+yz)-(y+z)(x-1)=0\)
\(\Leftrightarrow (x-1)(yz+1-y-z)=0\)
\(\Leftrightarrow (x-1)(y-1)(z-1)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)
Nghĩa là ít nhất một trong ba số có giá trị bằng 1 (đpcm)
*)Cách cho THCS Yahoo Hỏi & Đáp
*)Cách cho THPT
Áp dụng C-S dạng Engel \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{3\sqrt[3]{xyz}}=\frac{3}{\sqrt[3]{xyz}}\)
Vậy chứng minh \(\frac{3}{\sqrt[3]{xyz}}>\frac{18}{xyz+2}\Leftrightarrow xyz-6\sqrt[3]{xyz}+2>0\)
Đặt \(t=\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow0< t\le\frac{1}{3}\)
Hàm số \(f\left(t\right)=t^3-6t+2\) nghịch biến trên (\(0;\frac{1}{3}\)]
\(f\left(t\right)\ge f\left(\frac{1}{3}\right)=\frac{1}{27}>0\) (ĐPCM)
Vai trò \(x,y,z\)như nhau không mất tính tổng quát ta giả sử \(x\ge y\ge z\)
Nếu \(x< 2\)thì \(xyz< 2\cdot2\cdot z=4z=z+3z< 2+3z\le2+x+y+z\)(mâu thuẫn)
Vậy \(x\ge2\)
Nếu \(z>2\)thì \(xyz>x\cdot2\cdot2=4x=x+3x>2+3x\ge2+x+y+z\)(mâu thuẫn)
Vậy \(z\le2\)
Nghĩa là có ít nhất 1 số không nhỏ hơn 2 và ít nhất 1 số không lớn hơn 2
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{z+y+z}=9=\dfrac{18}{2}>\dfrac{18}{xyz+2}\)
* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )
Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)
Chứng minh tương tự khi đó :
\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)
\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)
\(\Rightarrow P\le2016\)
Lời giải:
Ta có:
\(A=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}=\frac{1}{x(x+1)}+\frac{1}{y(y+1)}+\frac{1}{z(z+1)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)(1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{1}\geq \frac{4}{x+1}\) và tương tự với các phân thức còn lại rồi cộng lại:
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\geq 4\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\Leftrightarrow \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\right)(2)\)
Từ (1); (2) suy ra \(A\geq \frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)\)
Mà theo BĐT Cauchy- Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=\frac{9}{3}=3\)
Do đó: \(A\geq \frac{3}{4}(3-1)=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
Lời giải:
$x+y+z>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$
$\Leftrightarrow x+y+z>xy+yz+xz$ (do $xyz=1$)
$\Leftrightarrow x+y+z-xy-yz-xz>0$
$\Leftrightarrow xyz+x+y+z-xy-yz-xz-1>0$
$\Leftrightarrow (x-xy)+(y+z-yz-1)+(xyz-xz)>0$
$\Leftrightarrow x(1-y)+(1-y)(z-1)-xz(1-y)>0$
$\Leftrightarrow (1-y)(x+z-1-xz)>0$
$\Leftrightarrow (1-y)(1-z)(x-1)>0$
$\Leftrightarrow (1-y)(1-z)(1-x)<0(*)$
Nếu trong 3 số $x,y,z$ đều nhỏ hơn $1$ thì $(1-y)(1-z)(1-x)>0$ (mâu thuẫn với $(*)$)
Do đó trong 3 số có ít nhất 1 số lớn hơn $1$.