K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

17 tháng 10 2017

\(VT=\left(xyz+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)

\(=yz+xz+xy+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)

\(=\left(yz+xz+xy\right)+\left(\dfrac{x^2}{xz}+\dfrac{z^2}{yz}+\dfrac{y^2}{xy}\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\ge\left(yz+xz+xy\right)+\dfrac{\left(x+y+z\right)^2}{\left(xz+yz+xy\right)}+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

(bđt Cauchy Shwarz dạng Engel)

\(\ge2\left(x+y+z\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

(bđt AM - GM)

\(=\left(x+y+z\right)+\left(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\ge\left(x+y+z\right)+6\sqrt[6]{x\times y\times z\times\dfrac{1}{x}\times\dfrac{1}{y}\times\dfrac{1}{z}}\)

\(=x+y+z+6=VP\left(\text{đ}pcm\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

1 tháng 6 2017

Ta có : \(3\sqrt{xyz}=\sqrt{x}^2+\sqrt{y}^3+\sqrt{z}^3\ge3\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}=3\sqrt{x}\sqrt{y}\sqrt{z}=3\sqrt{xyz}.\)

Dấu = xảy ra

=> x =y =z

=> A = (1+1)(1+1)(1+1) =8

1 tháng 6 2017

mk thấy nó sai sai . Tại sao 3\(\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}\) = 3\(\sqrt{x}\sqrt{y}\sqrt{z}\)

31 tháng 10 2017

Guể :v t nhớ làm bài này rồi mà :v

Đặt \(x=\dfrac{bc}{a^2};y=\dfrac{ac}{b^2};z=\dfrac{ab}{c^2}\)\(\Rightarrow\left\{{}\begin{matrix}abc=1\\a,b,c>0\end{matrix}\right.\)

\(BDT\Leftrightarrow\dfrac{a^4}{b^2c^2+a^2bc+a^4}+\dfrac{b^4}{a^2c^2+ab^2c+b^4}+\dfrac{c^4}{a^2b^2+abc^2+c^4}\ge1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\)

Cần chứng minh \(\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+a^2bc+abc^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) *Đúng theo AM-GM*

31 tháng 10 2017

uh bài này làm rồi, tại lúc đó đầu hơi ngu nên không nhớ ra, thông cảm nhébucminh

20 tháng 11 2018

\(\dfrac{1}{\left[\left(x+z\right)-\left(y+z\right)\right]^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\ge4\)

\(\Leftrightarrow\dfrac{1}{\left(x+z\right)^2+\left(y+z\right)^2-2}+\dfrac{\left(x+z\right)^2+\left(y+z\right)^2-2}{1}\ge2\)

(AM-GM)