Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0)
BĐT cần chứng minh tương đương
\(VT\ge4\left(x+y+z\right)\)
\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Theo BĐT Cauchy-Schwarz và AM-GM, ta có:
\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)
Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)
Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)
\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)
@Phương An
cái chỗ math processing error kia là \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\)
ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)
đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)
ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)
Áp dụng bất đẳng thức cauchy:
\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)
tương tự với các phân thức còn lại ta có:
\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
hay \(x=y=z=\sqrt{3}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành
Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)
Ta có:
\(a^2+b^2+c^2=1\)
\(\Rightarrow a^2+b^2=1-c^2\)
\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)
Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)
\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)
\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)
\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)
\(\dfrac{1}{\left[\left(x+z\right)-\left(y+z\right)\right]^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\ge4\)
\(\Leftrightarrow\dfrac{1}{\left(x+z\right)^2+\left(y+z\right)^2-2}+\dfrac{\left(x+z\right)^2+\left(y+z\right)^2-2}{1}\ge2\)
(AM-GM)