K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

cho mk đính chính lại cái đề nha 

x,y,z khác 0

18 tháng 9 2018

Ta có: (căn x+y)2=(căn x+z + căn y+x)2
suy ra:x+y=(căn x+z)+2(căn x+z)(căn y+z)+(căn y+z)2
suy ra:x+y=x+z+y+z+2[căn (x+z)(y+z)]
suy ra:-z=căn (x+z)(y+z)
suy ra:(-z)2=[căn (x+z)(y+z)]2
suy ra:z2=(x+z)(y+z)
suy ra:z2=xy+xz+yz+z2
suy ra:xy+yz+xz=0
suy ra:(xy+yz+xz)/xyz=0(vì x,y,z khác 0)
suy ra:xy/xyz+yz/xyz+xz/xyz=0
suy ra:1/x+1/y+1/z=0(ĐPCM)
K CHO MÌNH VỚI NHA

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)

\(\Leftrightarrow x^2-4x+1=4x-2x\sqrt{x+\frac{1}{x}}\)

\(\Leftrightarrow x^2-4x+1=2x(2-\sqrt{x+\frac{1}{x}})\)

\(\Leftrightarrow x^2-4x+1=2x.\frac{2^2-\left(x+\frac{1}{x}\right)}{2+\sqrt{x+\frac{1}{x}}}\)

\(\Leftrightarrow x^2-4x+1=2x.\frac{4x-x^2-1}{x\left(2+\sqrt{x+\frac{1}{x}}\right)}\)

\(\Leftrightarrow (x^2-4x+1)\left(1+\frac{2}{2+\sqrt{x+\frac{1}{x}}}\right )=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0, do đó

\(x^2-4x+1=0\)

\(\Leftrightarrow x=2\pm \sqrt{3}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Vì \(x+y+z=0\Leftrightarrow x=-(y+z)\)

\(\Rightarrow x^2=(y+z)^2=y^2+z^2+2yz\)

\(\Rightarrow y^2+z^2-x^2=-2yz\)

\(\Rightarrow \frac{x^2}{y^2+z^2-x^2}=\frac{x^2}{-2yz}=\frac{x^3}{-2xyz}\)

Hoàn toàn tương tự. ta có:

\(\frac{y^2}{z^2+x^2-y^2}=\frac{y^3}{-2xyz}; \frac{z^2}{x^2+y^2-z^2}=\frac{z^3}{-2xyz}\)

Do đó:
\(P=\frac{x^3+y^3+z^3}{-2xyz}\)

Ta biết rằng:

\(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\)

\(=-3(x+y)(y+z)(x+z)\)

\(=-3(-z)(-x)(-y)=3xyz\)

Suy ra \(P=\frac{3xyz}{-2xyz}=\frac{-3}{2}\)

Á nhầm nhaaa cái cuối cùng là cộng z2 đó

1 tháng 11 2019

Ta có :

\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)

tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)

\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)

\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)

Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)

26 tháng 10 2018

\(\sqrt{x}+\sqrt{y}=\sqrt{z}\Rightarrow x+y+2\sqrt{xy}=z\Rightarrow x+y-z=-2\sqrt{xy}\)

\(\sqrt{x}-\sqrt{z}=\sqrt{y}\Rightarrow x+z-2\sqrt{xz}=y\Rightarrow z+x-y=2\sqrt{xz}\)

Tương tự:\(y+z-x=2\sqrt{yz}\)

\(A=\frac{1}{-2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{zx}}=\frac{1}{2}\left(\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}\right)=0\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

20 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2xy\sqrt{x}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2yz\sqrt{y}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2xz\sqrt{z}}=\dfrac{1}{xz}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\) ( 1 )

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2y^2}}=\dfrac{2}{xy}\\\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge2\sqrt{\dfrac{1}{y^2z^2}}=\dfrac{2}{yz}\\\dfrac{1}{z^2}+\dfrac{1}{x^2}\ge2\sqrt{\dfrac{1}{x^2z^2}}=\dfrac{2}{xz}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)

\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\) ( 2 )

Từ ( 1 ) ( 2 )

\(\Rightarrow VT\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\) ( đpcm )

30 tháng 9 2017

Áp dụng BĐT AM-GM:

\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)

Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)

\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)

Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)

\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)

30 tháng 9 2017

cảm ơn bạn nhé