K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)

\(\Leftrightarrow x^2-4x+1=4x-2x\sqrt{x+\frac{1}{x}}\)

\(\Leftrightarrow x^2-4x+1=2x(2-\sqrt{x+\frac{1}{x}})\)

\(\Leftrightarrow x^2-4x+1=2x.\frac{2^2-\left(x+\frac{1}{x}\right)}{2+\sqrt{x+\frac{1}{x}}}\)

\(\Leftrightarrow x^2-4x+1=2x.\frac{4x-x^2-1}{x\left(2+\sqrt{x+\frac{1}{x}}\right)}\)

\(\Leftrightarrow (x^2-4x+1)\left(1+\frac{2}{2+\sqrt{x+\frac{1}{x}}}\right )=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0, do đó

\(x^2-4x+1=0\)

\(\Leftrightarrow x=2\pm \sqrt{3}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Vì \(x+y+z=0\Leftrightarrow x=-(y+z)\)

\(\Rightarrow x^2=(y+z)^2=y^2+z^2+2yz\)

\(\Rightarrow y^2+z^2-x^2=-2yz\)

\(\Rightarrow \frac{x^2}{y^2+z^2-x^2}=\frac{x^2}{-2yz}=\frac{x^3}{-2xyz}\)

Hoàn toàn tương tự. ta có:

\(\frac{y^2}{z^2+x^2-y^2}=\frac{y^3}{-2xyz}; \frac{z^2}{x^2+y^2-z^2}=\frac{z^3}{-2xyz}\)

Do đó:
\(P=\frac{x^3+y^3+z^3}{-2xyz}\)

Ta biết rằng:

\(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\)

\(=-3(x+y)(y+z)(x+z)\)

\(=-3(-z)(-x)(-y)=3xyz\)

Suy ra \(P=\frac{3xyz}{-2xyz}=\frac{-3}{2}\)

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

2 tháng 12 2019

Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)

Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)

25 tháng 10 2018

Nesbit:v dài

25 tháng 10 2018

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

17 tháng 6 2017

Ta có: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)

\(=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\)

\(=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2z}{xyz}-\dfrac{2x}{xyz}-\dfrac{2y}{xyz}\)

\(=3-\dfrac{2\left(x+y+z\right)}{xyz}\)

\(=3-\dfrac{2xyz}{xyz}=3-2=1\)

Vậy P = 1

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)