Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt x12=y9=z5=kx12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Áp dụng liên tiếp bất đẳng thức Mincopxki và bất đẳng thức Cauchy-Schwarz:
\(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)
\(A\ge\sqrt{4+\dfrac{81}{4}}=\sqrt{\dfrac{97}{4}}\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
\(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(B=\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+\dfrac{162}{\left(x+y+z\right)^2}}\)
\(B\ge\sqrt{4+\dfrac{162}{4}}=\sqrt{\dfrac{89}{2}}\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
Câu 1:
\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)
\(\Leftrightarrow x^2-4x+1=4x-2x\sqrt{x+\frac{1}{x}}\)
\(\Leftrightarrow x^2-4x+1=2x(2-\sqrt{x+\frac{1}{x}})\)
\(\Leftrightarrow x^2-4x+1=2x.\frac{2^2-\left(x+\frac{1}{x}\right)}{2+\sqrt{x+\frac{1}{x}}}\)
\(\Leftrightarrow x^2-4x+1=2x.\frac{4x-x^2-1}{x\left(2+\sqrt{x+\frac{1}{x}}\right)}\)
\(\Leftrightarrow (x^2-4x+1)\left(1+\frac{2}{2+\sqrt{x+\frac{1}{x}}}\right )=0\)
Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0, do đó
\(x^2-4x+1=0\)
\(\Leftrightarrow x=2\pm \sqrt{3}\)
Câu 2:
Vì \(x+y+z=0\Leftrightarrow x=-(y+z)\)
\(\Rightarrow x^2=(y+z)^2=y^2+z^2+2yz\)
\(\Rightarrow y^2+z^2-x^2=-2yz\)
\(\Rightarrow \frac{x^2}{y^2+z^2-x^2}=\frac{x^2}{-2yz}=\frac{x^3}{-2xyz}\)
Hoàn toàn tương tự. ta có:
\(\frac{y^2}{z^2+x^2-y^2}=\frac{y^3}{-2xyz}; \frac{z^2}{x^2+y^2-z^2}=\frac{z^3}{-2xyz}\)
Do đó:
\(P=\frac{x^3+y^3+z^3}{-2xyz}\)
Ta biết rằng:
\(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\)
\(=-3(x+y)(y+z)(x+z)\)
\(=-3(-z)(-x)(-y)=3xyz\)
Suy ra \(P=\frac{3xyz}{-2xyz}=\frac{-3}{2}\)
Áp dụng bất đẳng thức cô si ta có :
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3+\left(\sqrt{z}\right)^3\ge3\sqrt[3]{\left(\sqrt{xyz}\right)^3}=3\sqrt{xyz}\)Dấu "=" xảy ra khi :\(\sqrt{x}=\sqrt{y}=\sqrt{z}\)
Do đó :\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Vậy A=8
Ta có: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
\(=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\)
\(=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2z}{xyz}-\dfrac{2x}{xyz}-\dfrac{2y}{xyz}\)
\(=3-\dfrac{2\left(x+y+z\right)}{xyz}\)
\(=3-\dfrac{2xyz}{xyz}=3-2=1\)
Vậy P = 1